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Description

The accompanying files provide Stata and Matlab routines to estimate the Random Parameter Model (RPM)
following Apesteguia and Ballester (Forthcoming). Angelo Gutierrez provided outstanding research assistance
in the development of these codes. The MAIN file in each folder contains detailed comments explaining the
codes for each program. We illustrate their use with data from Andersen, Harrison, Lau, and Rutström (2008).
However, the codes can be easily adapted to other datasets. We’ve made an effort to make the codes flexible
and easy to understand.

Data

The codes take as input a dataset with information of different risk-aversion choice tasks in the style of the
multiple-price lists of Holt and Laury (2002). An observation i consists in two lotteries, Xi and Yi, that are
presented to an individual. Lottery Xi pays x1,i with probability pi and x2,i with probability 1 − pi. Lottery
Yi pays y1,i with probability pi and y2,i with probability 1− pi. The individual can express preference for one
of the lotteries or indifference between the two. We define an indicator variable Ci and set Ci = 1 if lottery Yi
is chosen and set Ci = 0 if Xi is chosen instead. If the individual is indifferent between both lotteries, we set
Ci = −1. Let idi denote the individual who is presented with the lottery in observation i. The following table
illustrates the database used in the codes by showing 7 typical observations in the dataset used by the codes.

Tab. 1: Example of the data used as input in the codes

obs id x1 x2 y1 y2 p C
1 1 2000 1750 4000 150 0.3 0
2 1 2000 1750 4000 150 0.7 0
3 1 2000 1750 4000 150 0.5 0
4 2 2250 1500 4000 500 0.9 1
5 3 2000 1600 3850 100 0.9 1
6 4 2500 1000 4500 50 0.7 0
7 4 2250 1500 4000 500 0.3 1

A key variable for the estimation of the RPM is the risk aversion level that equalizes the expected value of
lotteries Xi and Yi. This value is denoted as ωi and, adopting a CRRA formulation, is defined implicitly by the
following equation.
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Our code provides routines to compute ωi by solving numerically this non-linear equation using the information
of the lottery provided in each observation. For the case of Matlab, we make use of the function fsolve in the
Optimization Toolbox. For Stata, we use the Mata programming language embedded in Stata.1

We use data from Andersen, Harrison, Lau, and Rutström (2008) field experiment to illustrate how to use
the codes. Their experiment compromised 253 individuals chosen to get a representative sample of the adult
Danish population. In their experiment, there were four different risk-aversion choice tasks in the style of the
multiple-price lists of Holt and Laury (2002). Each task comprised ten pairs of nested gambles. For every pair
of gambles, subjects could either choose one of the gambles, or express indifference between the two. In the
latter case, they were told that the experimenter would settle indifference by tossing a fair coin. To test the
codes, we pool the observations from all individuals to get a dataset with a sample of 7928 observations.

Technical Details

The point estimators in both Matlab and Stata are computed by maximizing the conditional log-likelihood of
the model. In estimation of the RPM, the probability of choosing lottery Xi over lottery Yi is defined as:

Pi (θ; ωi) = (1− κ)F (λ (r − ωi)) + κ (1− F (λ (r − ωi))) .

Where r is the population risk-aversion level, λ is a precision parameter, κ is a tremble probability, θ = [r, λ, κ]

denotes the vector of parameters in the model and F is a cumulative distribution function.2 It follows that the
log-likelihood function of observation i is defined as

log f (Ci|ωi; θi) =


log (Pi) if Ci = 0

log (1− Pi) if Ci = 1

1
2 log (Pi) +

1
2 log (1− Pi) if Ci = −1.

Let logL (θ) =
∑n
i=1 log f (Ci|ωi; θi) denote the log-likelihood function of the Random Parameter Model, given

our sample of n observations. As usual, the Maximum Likelihood Estimator of θ is given by

θ̂ = argmax
θ

logL (θ) .

In the Stata codes, we use the ml command to get θ̂ after specifying the log f (Ci|ωi; θi) manually. This power-
ful command computes the standard deviation of the estimates and allows to easily add explanatory variables
to our model, as well as cluster the standard errors by individual.

In the Matlab codes, we maximize logL (θ) numerically using the command fminunc of the Optimization
Toolbox to get θ̂. The estimated standard deviations are computed using a consistent estimator of the asymptotic
covariance matrix of the MLE estimator θ̂. Under some regularity conditions, we have:3

√
n
(
θ̂ − θ0

)
d→ N

(
0, AV AR

(
θ̂
))

,

1 It is important to note that ωi is not well defined if one of the two lotteries stochastically dominates the other. As an example,
there are several observations where lottery Yi dominates lottery Xi in the dataset used to illustrate the codes. For estimation of
the RPM, it is enough to set ωi to be an arbitrarily large value whenever Yi dominates Xi. As we will see later, this makes the
probability of choosing lottery Xi tend to 0 (plus a tremble probability), giving us the correct log-likelihood for this observation.
In the codes provided, the numerical solvers of the nonlinear equation set automatically a large value for ωi whenever Yi dominates
Xi.

2 In the codes, we use the CDF of a Logistic distribution (Logit model) and the Normal distribution (Probit model). Furthermore,
we estimate log λ instead of λ to keep this parameter positive and use the delta method to recover the standard deviation of λ̂.

3 See Section 7.3 of Hayashi (2000) or Section 5.8 in Hamilton (1994).
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where θ0 is the population value of θ and the asymptotic variance covariance matrix AV AR
(
θ̂
)
is given by
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)
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−1
1
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.

Under further regularity conditions, each of these matrices can be estimated consistently using their sample
counterparts:
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The standard deviations are computed as the finite sample approximation σ̂
(
θ̂k

)
=

√
1
n
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. In

applications, it is usual to cluster the standard errors to take into account potential correlation on the responses
of the same individual. Assume that there are m clusters of observations, denoted as G1, G2, . . . , Gm. We can
compute the clustered-robust standard errors using the same formula as before but replacing Ĵ2 with

Ĵ∗2 =
1

n
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)
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 .
The Matlab codes compute the clustered-robust standard errors of the RPM using the previous formulas.
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