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Which decision rules are the most efficient? Which are the best in terms of maximin or maximax?
We study these questions for the case of a group of individuals faced with a collective choice from
a set of alternatives. A key message from our results is that the set of optimal decision rules is well
defined, particularly simple, and well known: the class of scoring rules. We provide the optimal scoring
rules for the three different ideals of justice under consideration: utilitarianism (efficiency), maximin,
and maximax. The optimal utilitarian scoring rule depends crucially on the probability distribution of the
utilities. The optimal maximin (respectively maximax) scoring rule takes the optimal utilitarian scoring
rule and applies a factor that shifts it towards negative voting (respectively plurality voting).
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1. INTRODUCTION

The problem of aggregation of preferences in group decision making has been studied exten-
sively in the literature. In practice, such aggregation is generally based on ordinal information;
i.e. disregarding the intensities of the individuals’ preferences. From small committee decisions
to voting in national elections, decision rules typically do not allow individuals to directly ex-
press their underlying cardinal utilities. This requirement to use ordinal information appears to
be a practical demand, in part, because of the difficulty of expressing preferences in numerical
terms, that is, assigning an exact utility intensity to each alternative.1

On the other hand, classical ideals of justice, like utilitarianism or maximin, are defined in
terms of cardinal utilities. In brief terms, utilitarianism evaluates an alternative in terms of the
average individual utility value, while the maximin principle disregards the utility values of the
best-off individuals to evaluate an alternative on the basis of the utility value of the worst-off
agent.

It is therefore the case that, while ideals of justice make use of interpersonal cardinal util-
ities, actual decision rules use only ordinal information. The question arises as to how to ap-
proach the evaluation of decision rules in cardinal terms, given that they use only limited ordinal

1. For a related discussion, seeAusten-Smith and Banks(1999).
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information. In other words, this paper attempts to answer questions such as which ordinal deci-
sion rules perform best in terms of a given cardinal ideal of justice, which are the most efficient,
and which are the best in maximin, or maximax, terms.

In our setting, a group of individuals has to choose an alternative from a set of alternatives.
The individuals’ valuations over the alternatives are realizations from a random variable. We
evaluate decision rules on the basis of their expected value according to a given ideal of justice.
We say that a decision rule isoptimal if it always selects the alternatives that are maximal in
expectation with respect to the given ideal of justice. We show that, for every number of indi-
viduals and alternatives, and for every probability distribution of the utility values, the optimal
decision rule is (1) for utilitarianism a scoring rule that depends crucially on the probability
distribution of the utilities, (2) for maximin approximately a scoring rule that applies a factor
to the optimal utilitarian scoring rule shifting it towards negative voting, and (3) for maximax
approximately a scoring rule that applies a factor to the optimal utilitarian scoring rule shifting
it towards plurality voting.2 3

More concretely, we show that for utilitarianism, the expected values of the alternatives,
given their ranking, completely characterize the weights of the optimal decision rule. The intu-
ition for the relation between the weights of the optimal utilitarian scoring rule and the probabil-
ity distribution is as follows. When the probability distribution of the individuals’ valuations over
the alternatives has an increasing density function, individuals are expected to have a generally
high regard for the alternatives. In this case, the optimal utilitarian scoring rule will lean towards
negative voting, which discriminates more strongly between the lower-ranked than between the
higher-ranked alternatives. This is because the utility values of the higher-ranked alternatives
will tend to be concentrated, making it less crucial to discriminate between them. There may, in
contrast, be sizeable differences between the values of the lower-ranked alternatives, and thus,
it is important to discriminate between them. If, on the other hand, the probability distribution
of the individuals’ valuations over the alternatives has a decreasing density function, individu-
als are not expected to be too enthusiastic about the alternatives. Then, the optimal utilitarian
scoring rule will lean towards plurality voting, which discriminates more strongly among the
higher-ranked alternatives than among the lower-ranked alternatives. Finally, if the valuations
made by individuals are expected to be evenly distributed, then the optimal scoring rule is Borda
in which there are constant differences between the weights assigned to consecutive alternatives
in the ranking.

The maximin optimal scoring rule takes the utilitarian scoring rule and applies a factor that
shifts it towards negative voting. That is, under maximin, the optimal rule discriminates more
strongly between the lower-ranked alternatives than between the higher-ranked alternatives, thus
transmitting precise information on the worst-regarded alternatives. Under the maximax rule,
the direction is reversed. The maximax optimal scoring rule again takes the utilitarian rule and
applies a factor that shifts it towards plurality. Then, the optimal maximax rule discriminates
more strongly between the higher-ranked alternatives than between the lower-ranked alternatives
in order to convey precise information on the best-regarded alternatives.

1.1. Related literature

We are by no means the first to evaluate decision rules. There is a large and still growing litera-
ture examining decision rules on the basis of their capacity to meet certain desirable properties

2. A scoring rule is a vector of fixed weights that individuals assign to the different alternatives. The plurality
scoring rule, the negative scoring rule, and Borda’s scoring rule are especially salient cases. We give precise definitions
in Section2.2.

3. The notion of “approximately a scoring rule” will be made precise in Section3.

 at E
dif C

C
 S

alud - B
iblioteca on F

ebruary 3, 2011
restud.oxfordjournals.org

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


“rdq023” — 2011/1/7 — 16:00 — page 3 — #3

APESTEGUIAETAL. ON THE JUSTICE OF DECISION RULES 3

such as anonymity, strategy proofness, consistency of the social preference ordering, Pareto
dominance, path independence, probability of selecting the Condorcet winner, and so forth.4

Thereis, however, very little work on evaluating decision rules on the basis of some theory of
justice. Notable exceptions are the early simulation studies ofBordley(1983) andMerrill (1984)
and the theoretical work ofWeber(1978). Bordley and Merrill use simulations to analyse the
efficiency of different voting systems, including plurality and Borda. Consistent with our results,
they show that plurality may be outperformed in utilitarian terms by other decision rules.Weber
(1978) studies the performance of scoring rules for the case of utilitarianism and for the uniform
distribution. He shows that, asymptotically, Borda is the best scoring rule in this case. This,
again, is consistent with our results.

In another related strand of literature, there are papers that study how to select a voting rule
in a constitutional setting where there are two options, the status quo and a second alternative,
and individual preferences are uncertain. A voting rule is characterized by the number of votes
needed to accept the second alternative over the status quo. The papers that comprise this lit-
erature examine issues such as which voting rules maximize efficiency, which are self-stable,
how to weight votes in heterogeneous contexts, self-enforcement voting rules, and so forth. For
examples in this vein, seeRae(1969),Barbera and Jackson(2004,2006) andMaggi and Morelli
(2006).

Finally, there is a growing literature addressing the question of the transmission of utility
intensities in collective decision problems (seeCasella,2005;Jackson and Sonnenschein, 2007;
Hortala-Vallve, 2009,2010). In particular, they show that voting systems in which individuals are
allowed to express intensities may lead to social welfare gains. The innovation of these papers is
to consider a decision problem repeated overT times and endow individuals with a maximum
number of votes to allocate over theT problems. Individuals are then able to transmit intensities
by concentrating their votes on those issues that are most relevant to them.

2. ENVIRONMENT

Consider a society composed of a finite set of individualsN, with cardinalityn ≥ 2, who have
preferences over a finite set of alternativesK , with cardinalityk ≥ 3. Typical elements ofN are
denoted byi and j and ofK by l andh. Now, we first present the cardinal environment (utilities
and ideals of justice), then the ordinal setting (ordinal preferences and decision rules), and then
one that links the two worlds (an index to evaluate the success of a decision rule in terms of a
given ideal of justice).

2.1. Cardinal utilities and ideals of justice

Individuals’ evaluations over the set of alternatives are cardinal, interpersonally comparable i.i.d.
utility random variables.Ul

i denotesthe random variable representing the utility of individuali
for alternativel , distributed according to the distribution functionF in the intervalI = [0, ū),
ū ≤ ∞. We often refer toF as thecultureof the society. We assume thatF has an absolutely
continuous density functionf , with finite first moment. Hence, the probability thatUl

i takes a
particular value is 0.

A Social Welfare Function (SWF) is a mappingW from I n×k to I k, whereWl (ul ) ∈ I de-
notesthe social value of alternativel , given the realization of the vector of random variables

4. Early studies includeBrams and Fishburn(1978),Caplin and Nalebuff(1988),Demeyer and Plott(1970),
andNurmi (1983). See alsoBenoit and Kornhauser(2010),Dasgupta and Maskin(2008),Gehrlein(1997),Levin and
Nalebuff(1995),Myerson(2002),Ozkal-Sanver and Sanver(2006), andSaari(1999).

 at E
dif C

C
 S

alud - B
iblioteca on F

ebruary 3, 2011
restud.oxfordjournals.org

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


“rdq023” — 2011/1/7 — 16:00 — page 4 — #4

4 REVIEW OF ECONOMIC STUDIES

Ul = (Ul
1, . . . ,U

l
n).

5 The three SWFs considered herein are utilitarianism, maximin, and max-
imax. Utilitarianism evaluates an alternative by taking the average of all individual utilities.
Formally, a SWF is utilitarian ifW = UT with UTl (ul ) =

∑
i ∈N ul

i /n. The maximinprinci-
ple evaluates an alternative on the basis of the utility value of the worst-off agent, disregard-
ing any other utility value. In other words, a SWF is of the maximin type ifW = M N with
M Nl (ul ) = mini ∈N ul

i . Consider also themaximaxrule, which, in contrast to maximin, fo-
cuses on the best-off individuals. That is, a SWF is of the maximax type ifW = M X with
M Xl (ul ) = maxi ∈N ul

i . As an ideal of justice maximax may appear a mere formal curiosity. We
shall see, however, that because of its close connection to plurality voting, the maximax principle
plays a more important role in democratic political institutions than might be expected.

2.2. Ordinal preferences and decision rules

We denote byM the matrix representing theordinal preferences of the individuals, given the
realizations of the utility random variables{Ul

i }i ∈N,l∈K . M is an n × k matrix with entries
ml

i ∈ {1, . . . ,k} denoting the position of alternativel in the preferences of individuali , where
the higherml

i is, the higher alternativel is ranked by individuali .6 Ml denotesthe l -th col-
umn of matrixM , representing the ordinal preferences of all individuals with respect to alterna-
tive l . The collection of all possible matricesM is denoted byM. We denote byl(t) thenumber
of individuals that place alternativel exactly abovet − 1 alternatives. That is,l(t) = |{i ∈ N:
ml

i = t}|.
A decision ruleD is a correspondence fromM to K . We impose no restriction on the possi-

ble set of decision rules other than assuming that it uses individuals’ actual ordinal preferences.
Scoring rules are a particularly interesting class of decision rules. They are typically simple to
implement in practice and encompass a number of widely used decision rules. Formally, con-
sider a vectorS∈ [0,1]k, with Sj ≤ St whenever j ≤ t , S1 = 0, andSk = 1, whereSt denotes
the value of an individual’s vote for whichever alternative she ranks higher than exactlyt − 1
alternatives. GivenM , an alternativeh is selected byS if and only if h ∈ argmaxl∈K

∑k
t=1 l(t)St .

We say that a scoring ruleS is convex (concave) if the differencesSt+1 − St , 1 ≤ t ≤ k−1,
are increasing (decreasing). A convex scoring rule aims to discriminate more finely among the
higher-valued alternatives than among the lower-valued alternatives. A concave scoring rule
pursues exactly the opposite aim,i.e. to discriminate more finely among the lower-valued alter-
natives than among the higher-valued ones. The most salient scoring rules are plurality, Borda,
and negative. A scoring rule isplurality if S= SPl with St

Pl = 0 for everyt < k. That is, plurality
allows individuals to indicate only their first choice, and hence, it represents an extreme case
of a convex scoring rule. It isnegativeif S= SNg with St

Ng = 1 for everyt > 1. Negative rep-
resents the opposite of plurality since it only allows individuals to signify their least preferred
alternative and therefore represents an extreme case of a concave scoring rule. A scoring rule is
Borda if S= SBd with St

Bd = t−1
k−1 for every t . Borda assigns constant differences between the

weights assigned to consecutive alternatives in the ranking. Consequently, Borda represents the
intersection between convex and concave scoring rules.

2.3. Cardinal and ordinal preferences: Evaluating decision rules

The aim of this paper is to find the decision ruleD that, for every single possible composition
of M , identifies the optimal alternative(s) in terms of a given ideal of justiceW. In pursuit

5. Throughout the paper, we use the terms “social welfare function” and “ideal of justice” interchangeably.
6. Note that, given that the culture is continuous, ties have zero probability, and hence, we can assume without

loss of generality thatml
i 6= mh

i for all i ∈ N and for alll ,h ∈ K , l 6= h.
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of this aim, it is important to note that for every givenM , there is a whole class of utility
realizations of the random variables{Ul

i }i ∈N,l∈K consistentwith it. Thus, we judge an alternative
l by its expected utility valuein terms of a given ideal of justiceW, in the class of cardinal
utility realizations consistent withM . That is, givenM , alternativel is evaluated in terms of the
E[Wl (Ul ) | M ], whereWl (Ul ) is a random variable that depends on the vector of random utility
valuesUl = (Ul

1, . . . ,U
l
n) consistentwith M . We are now in a position to introduce the notion

of optimal decision rules. TheW-optimal decision ruleDW selects,for every single possible
composition ofM , all the alternatives with the largest expected value in terms ofW. That is,
DW is theW-optimal decision rule if, for allM ∈M:

DW(M) = argmax
h∈K

E[Wh(Uh) | M ].

Note that, for the case of utilitarianism,E[Wh(Uh) | M ] represents the expected average util-
ity value ofh within the class of cardinal utility realizations consistent withM , i.e.E[Wh(Uh)
|M ] = E[

∑
i ∈N Uh

i /n | M ]. For maximin,E[Wh(Uh) | M ] = E[mini ∈N Uh
i | M ], and for

maximax,E[Wh(Uh) | M ] = E[maxi ∈N Uh
i | M ].

Thecomputation ofE[Wh(Uh) | M ] requires the use of the theory of order statistics.7 Given
the random variablesU1

i ,U2
i , . . . ,Uk

i , the order statisticsU (1)
i ≤ U (2)

i ≤ ∙∙ ∙ ≤ U (k)
i arealso ran-

dom variables, defined by sorting the realizations ofU1
i ,U2

i , . . . ,Uk
i in increasing order of mag-

nitude.U (t)
i denotesthe t-th order statistic of individuali , representing the utility value for

individual i of that alternative havingt −1 alternatives with lower utility values. Note that, since
the utility random variables are i.i.d.,U (t)

i andU (t)
j areidentical for every pair of individuals

i, j . Hence, for every positiont , we will often omit the individual subindex and writeU (t) with
cumulative distribution (respectively, density) functionF (t) (respectively, f (t)).

3. RESULTS

3.1. Utilitarianism

We first show that, for everyn, everyk, and every culture, the optimal utilitarian decision rule
is a scoring rule. This is good news because it implies that if the interest is to maximize the
expected value of utilitarianism, it is advisable to implement a scoring rule, which is a relatively
simple decision rule. Furthermore, we provide the exact form of the optimal utilitarian scoring
rule, conditional on the culture under consideration. More specifically, the culture determines
the expected values of the order statistics, which in turn characterize the optimal value of the
scoring rule.

Theorem 3.1. For every n, for every k, and for every culture, DUT is a scoring rule with

DUT(M) = argmax
l∈K

k∑

t=1

l(t)St
UT, where StUT = E[U (t)]−E[U (1)]

E[U (k)]−E[U (1)]
, 1 ≤ t ≤ k.

Theorem3.1 shows that the optimal utilitarian decision rule is a scoring rule with weights
St

UT = E[U (t)]−E[U (1)]
E[U (k)]−E[U (1)]

. The optimal weight of an alternative ranked at positiont is simply the

expected value of thet-th order statisticE[U (t)], normalized to lie in the unit interval. The
intuition of the result is as follows. Consider an alternativel and suppose that an individual
ranks it at positiont . Consequently, that individual’s expected utility from this alternative is
E[U (t)]. Now, for each position 1≤ t ≤ k, there arel(t) individuals that rank alternativel in

7. SeeDavid and Nagaraja(2003) for an introduction to the theory of order statistics.
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position t . It follows that the expected utilitarian pay-off for society of alternativel is simply∑k
t=1 l(t)E[U (t)]/n. Therefore, a scoring rule that uses the weightsE[U (t)], normalized to lie in

the unit interval, will be optimal and hence the result. The complete proof of Theorem3.1, and
of all the results that follow, is given in the Appendix.

Theorem3.1 shows that there is a mapping from the culture of the society to the optimal
utilitarian scoring rule.8 We now study the practical implications of this mapping. Theorem3.2
below relates the shape of the culture to the type of optimal utilitarian scoring rule. The main
intuition may be summarized as follows. If the values of the alternatives in some range of the
ranking are expected to be close to each other, then the optimal utilitarian scoring rule barely
discriminates among these alternatives and consequently assigns similar weights to them. How-
ever, when one expects to find relatively high dispersion in the values of the alternatives, then it
becomes important to discriminate closely among them.

For the sake of illustration, suppose,e.g. that individuals are expected to have a generally
high regard for the alternatives. In this case, the optimal utilitarian scoring rule will discriminate
more strongly among the lower-ranked alternatives and less strongly among the higher-ranked
alternatives. This is because the values of the higher-ranked alternatives will tend to be concen-
trated, and hence, the need to discriminate among them is less crucial. However, there may be
sizeable differences in the values of the lower-end alternatives in which case it will be important
to discriminate between them. Consequently, the optimal scoring rule has a shape analogous
to negative voting (i.e. a concave scoring rule). If, on the other hand, the utility values are ex-
pected to be low, then the optimal utilitarian scoring rule will discriminate strongly among the
best-ranked alternatives and be less concerned about the lower-ranked alternatives. In this case,
therefore, the optimal scoring rule is a version of plurality (a convex scoring rule). Note that
the former case arises when the values are drawn from an increasing density function, while the
latter when these are drawn from a decreasing density function.

Theorem 3.2. For every n, for every k, and for every culture with an increasing (decreasing)
density function, DUT is a concave (convex) scoring rule.

Since the uniform distribution has a constant density function, it immediately follows from
Theorem3.2 that Borda is the optimal utilitarian scoring rule in this case.9 Furthermore,the
proof of Theorem3.2suggests that for cultures in which the values of the middle-ranked alterna-
tives are concentrated, but there is relatively high dispersion in both the higher- and lower-ranked
alternatives, the optimal utilitarian scoring rule represents a combination of the forces discussed
above. It discriminates more strongly between the very best and between the very worst alter-
natives and less strongly between the intermediate alternatives. Consequently, the values ofSt

UT
grow rapidly for the lower-ranked alternatives, then slowly for the middle-ranked alternatives,
and then rapidly again for the higher-ranked alternatives. That is,SUT will first have a nega-
tive shape and then a plurality shape (i.e. first concave and then convex). On the other hand,
if one expects agents’ evaluations of the alternatives to be polarized,i.e. either very highly or
very poorly rated, the optimal scoring rule discriminates more strongly between the intermedi-
ate alternatives and less closely between the very best and between the very worst alternatives.
Consequently, the values ofSt

UT grow slowly for the lower-ranked alternatives, then rapidly for
the middle-ranked alternatives, and then slowly again for the higher-ranked alternatives. That is,
it will first be convex and then concave. It is easy to see that the first case is nicely captured

8. Given the results of Theorem3.1, we can use the terms optimal utilitariandecisionrule and optimal utilitarian
scoringrule interchangeably.

9. This result also follows immediately from Theorem3.1by using the expected values of the order statistics of
the uniform distribution.
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by probability distributions such as the normal distribution, or the Cauchy distribution, or for
certain parameters of the beta distribution, while the intuition of the latter case is consistent with
theU -quadratic distribution or with certain parameters of the beta distribution.

We illustrate the above relations between cultures and optimal utilitarian scoring rules by
way of an example. We use the family of beta distributions with different parameters to illustrate
the cases of cultures with (1) an increasing density function, (2) a decreasing density function,
(3) a symmetric and concave density function, (4) a symmetric and convex density function,
and (5) constant density function corresponding to the case of the uniform distribution. Figure
1 reports, for the case ofk = 9, each of these density functions and the corresponding optimal
utilitarian scoring rules, calculated according to Theorem3.1. For the expected values of the
order statistics of beta distributions, see,e.g.Thomas and Samuel(2008).

For each of the five distributions, Figure1 maps the positiont , in which an alternative is or-
dered, with the corresponding weight of the optimal scoring ruleSt

UT. Figure1 neatly represents
the previous discussions, showing that the shape of the optimal utilitarian scoring rule depends
crucially on the underlying culture of the society.

3.2. Maximin

Let us start by first describing an important property that holds for utilitarianism but not for max-
imin. In utilitarianism, an alternativel is evaluated according to the expected value of the sum
of the order statistics associated with the individuals’ valuations of alternativel . Since the utility
random variables are independent across individuals, the expected value of the sum of the order
statistics composingl is simply the sum of the expected value of the order statistics composingl .
This property gives tractability to the problem of finding the optimal utilitarian decision rule, al-
lowing us to offer the exact shape ofDUT contingentupon the expected values of the order
statistics. Thus,DUT provides insights about its relationship with the culture of the society. In
the case of maximin, an alternative is evaluated according to the expected value of the minimum
of the order statistics associated with individuals’ valuations of that alternative. The minimum
operator, however, does not preserve the independence of the order statistics across individuals,
and hence, the problem of finding the optimal maximin decision rule is less tractable.

In order to address this problem, we first make use of well-known results in reliability the-
ory. This allows us to give the exact shape of the optimal maximin decision ruleDMN, for
every society and every possible culture. Unfortunately,DMN is somewhat opaque regarding
its relationship with the culture of the society. In order to improve on this, in our second step,
we useDMN andbuild on known results in statistical theory to approximate the distributions
of the order statistics through the exponential distribution. The exponential approximation makes
the problem more tractable and allows us to show that the optimal maximin decision rule is ap-
proximately a scoring rule that depends on the expected values of the order statistics. Further-
more, we provide its exact shape and show that it has a particularly interesting relationship with
the optimal utilitarian scoring rule. The optimal maximin scoring rule is equal to the optimal
utilitarian scoring rule, multiplied by a fraction that makes the maximin scoring rule more con-
cave. Thus, the main message that follows from these results is that, relative to utilitarianism, the
optimal maximin scoring rule shifts towards negative voting. Consequently it discriminates more
closely between the lower-ranked alternatives, than between the higher-ranked alternatives.

We now turn to the formal presentation of the maximin results. In our first result, we use
tools from reliability theory to find the exact shape ofDMN, for every society and culture. In
particular, we adapt the notion of the failure rate function for systems comprising independent

 at E
dif C

C
 S

alud - B
iblioteca on F

ebruary 3, 2011
restud.oxfordjournals.org

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


“rdq023” — 2011/1/7 — 16:00 — page 8 — #8

8 REVIEW OF ECONOMIC STUDIES

FIGURE 1
Density functions for the five beta distributions and the corresponding optimal utilitarian scoring rules
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components to our context.10 We, thus, introduce the notion of the satiation rate of an order
statistic, which has a natural interpretation in our setting. The satiation rate of an order statistic
is simply the probability that the order statistic satiates at an utility valueu, conditional on having
reached that valueu. More formally, the satiation rate of thet-th order statisticU (t), denoted by
z(t)(u), is the probability thatU (t) ∈ (u,u + ε), knowing thatU (t) hasreached the valueu or
simply z(t)(u) = f (t)(u)

1−F (t)(u)
. This allows us to show that, as in the case ofDUT, DMN dependson

the order statistics. However, unlike in the case ofDUT, DMN doesnot depend on the expected
values of the order statistics, but on their satiation rates.

Theorem 3.3. For every n, for every k, and for every culture, the optimal maximin decision rule

is DMN(M) = argmax
l∈K

∫

I
exp

(
−
∫ u

0

k∑

t=1

l(t)z(t)(v)dv

)
du.

It emerges thatDMN maynot generally constitute a scoring rule. To provide more intuition
regarding the relationship between the culture of the society and the shape of the optimal max-
imin decision rule, we now approximate the distribution functions of the order statistics with a
single family of distributions: exponential distributions. The foundations for exponential approx-
imations have been studied extensively in the literature providing sharp bounds.11 Exponential
approximationsare widely used in statistical theory and its applications (e.g.in reliability theory,
insurance risk management, etc.), one of the main reasons being that the exponential distribution
is more manageable because of its memorylessness, which, in our context, implies that the satia-
tion rate is a constant function. The exponential distribution is also well known as the maximum
entropy distribution among all continuous distributions with support on the positive real num-
bers with a given mean. Maximizing entropy minimizes the amount of prior information built
into the distribution, thus giving the exponential distribution the necessary flexibility to approach
any possible distribution of order statistics with information only on the mean, as is the purpose
here.

Thus, we approximate the distribution function of thet-th order statisticF (t) throughthe
exponential distribution function with parameter 1/E[U (t)]. We then say that a decision rule is
approximately optimal in terms of the ideal of justiceW, and denote it bỹDW, if it is optimal
whenever we replace the order statistics of the culture with their exponential approximations.

Theorem 3.4. For every n, for every k, and for every culture,̃DMN is a scoring rule with

D̃MN(M) = argmax
l∈K

k∑

t=1

St
MN , where StMN = St

UT
E[U (k)]
E[U (t)]

.

Theorem3.4is fundamental for a better understanding of the optimal maximin decision rule.
It tells us that the approximate optimal maximin decision rule is a scoring rule, that, as in the case
of utilitarianism, relies on the expected values of the order statistics. Moreover, it establishes that
St

MN takes the optimal utilitarian scoring ruleSt
UT andapplies a factorE[U (k)]

E[U (t)]
thatmakesSMN

moreconcave, shifting it in the direction of negative voting. Note that if the utilitarian scoring
rule SUT is very convex, then the distance betweenE[U (k)] andE[U (t)] is large, and hence, the
factor E[U (k)]

E[U (t)]
makesSMN very concave. These intuitions can immediately be seen in Figure2.

10. SeeRausand and Hoyland(2004) for an introduction to system reliability theory.
11. SeeDaley(1988) for some early results on quantifying departure from exponentiality andCheng and He(1989)

for applied results in the context of reliability theory. SeeReiss(1989) for a textbook treatment in the context of order
statistics.
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10 REVIEW OF ECONOMIC STUDIES

FIGURE 2
Approximate optimal maximin scoring rules for the corresponding density functions of Figure1(a)

Figure 2 takes the same five distribution functions used for utilitarianism in Figure1, to
represent the approximate optimal maximin scoring rulesSMN, as characterized in Theorem
3.4. The figure makes it apparent that the approximate optimal scoring rulesSMN are truncated
towards negative for the five distributions. For example, the optimal scoring rule for the uniform
distribution assigns weights above 0.5 to all alternatives except the worst.

3.3. Maximax

Maximax shares the difficulty of maximin in that the maximum operator also fails to preserve the
independence of the order statistics. We therefore face a similar tractability problem to the one
we met in the previous section. In fact, our analysis of maximax parallels the previous analysis
of maximin. To this extent, we first offer the exact optimal maximax decision rule, and see that it
is somewhat opaque regarding its relationship with the underlying culture of the society. We then
approximate the distributions of the order statistics through exponential distributions and obtain
that the optimal maximax decision rule is approximately a scoring rule, characterized by the
expected values of the order statistics. Furthermore, the maximax scoring rule simply takes the
optimal utilitarian scoring rule and applies a factor that convexifies it, shifting it in the direction
of plurality.

We use the same tools as in Theorem3.3 to obtain the exact shape of the optimal maximax
decision ruleDMX . To do so, we assumethat u < ∞ and define the inverse random variable
Û l

i = u − Ul
i , with distribution functionF̂ , where F̂(u) = 1− F(u − u). Accordingly, ẑ(t)(̂u)

denotes the satiation rate of thet-th order statistiĉU (t). Theorem3.5 offers the exact shape
of the optimal maximax decision rule, characterized by the satiation rates of the inverse order
statisticsÛ l

i .
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FIGURE 3
Approximate optimal maximax scoring rules for the corresponding density functions of Figure1(a)

Theorem 3.5. For every n, for every k, and for every culture, the optimal maximax decision rule

is DMX (M) = argmin
l∈K

∫

I
exp

(
−
∫ û

0

k∑

t=1

l(t)ẑ(k−t+1)(v)dv

)
dû.

We now approximate the distribution functions of the order statisticF̂ (t) by the exponential
distribution with parameter 1/E[Û (t)]. This enables us to state the following result.

Theorem 3.6. For every n, for every k, and for every culture,̃DMX is a scoring rule with

D̃MX (M) = argmax
l∈K

k∑

t=1

St
MX , where StMX = St

UT
u−E[U (k)]
u−E[U (t)]

.

Theorem3.6shows that the approximate maximax optimal decision rule is a scoring rule that,
as in the case of maximin, draws upon the optimal utilitarian scoring rule. For every positiont ,
St

MX takes the valueSt
UT and modifies it by applying a factor that depends on the expected values

of thet-th andk-th order statisticsE[U (t)] andE[U (k)]. This factor convexifiesSMX , with regard
to SUT, shifting it towards plurality voting. Figure3 illustrates these considerations.

The figure takes the same five distribution functions as in the case of utilitarianism (and
maximin) and computes the maximax scoring rules according to Theorem3.6. It can be readily
seen that the five scoring rules are pushed downwards in the direction of plurality. For example,
the optimal scoring rule for the uniform distribution assigns weights below 0.5 to all alternatives
except the best.
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4. CONCLUSIONS

This paper explores the relationship between ideals of justice and decision rules. Whereas ideals
of justice are typically presented in cardinal terms, decision rules are primarily constructed on
the basis of ordinal information. We study the cardinal consequences of using ordinal-based
decision rules.

We have shown that the optimal choice of decision rule depends on the criterion of justice
that one wishes to follow. Among our specific findings, we emphasize that our results identify a
particularly prominent set of decision rules as optimal: the set of scoring rules. Interestingly, the
optimal scoring rules of the three ideals of justice under consideration are intimately linked. The
optimal maximin and maximax scoring rules take the optimal utilitarian scoring rules and apply
a factor that shifts them upwards and downwards, respectively. It emerges that maximax is best
approached by scoring rules with a plurality shape, maximin by scoring rules with a negative
voting shape, and, for the uniform distribution, utilitarianism is best approached by Borda.

APPENDIX A. PROOFS

Proof of Theorem3.1. Given that for anyl ,h ∈ K andi 6= j the random variableUl
i is independent of the random

variableUh
j , we can write

E

[∑
i ∈N Ul

i
n

∣
∣
∣
∣ M

]

=

∑
i ∈N E[Ul

i | Mi ]

n
.

In addition, since the random variables{Ul
i }l∈K arei.i.d., we can write

∑
i ∈N E[Ul

i | Mi ]

n
=

∑
i ∈N E[Ul

i | ml
i ]

n
.

RecallthatU (ml
i ) denotesthe ml

i −th order statistic determined by how individuali ranks alternativel . Thus, by
definition,

∑
i ∈N E[Ul

i | ml
i ]

n
=

∑
i ∈N E[U (ml

i )]

n
.

We can write the last expression in terms of the number of individuals who rank alternativel in the same position
t . That is,

∑
i ∈N E[U (ml

i )]

n
=

k∑

t=1

l(t)
E[U (t)]

n
.

Hence,

DUT(M) = argmax
l∈K

E

[∑
i ∈N Ul

i
n

∣
∣
∣
∣ M

]

= argmax
l∈K

k∑

t=1

l(t)
E[U (t)]

n
.

Finally, we only have to normalize the weights in the last expression to show thatDUT is indeed a scoring rule. It
is immediate that wheneverA ≥ 0 andB > 0,

argmax
l∈K

k∑

t=1

l(t)
E[U (t)]

n
= argmax

l∈K

k∑

t=1

l(t)
E[U (t)] − A

B
.

In particular, we can use the valuesA = E[U (1)] andB = E[U (k)] −E[U (1)]. Clearly, it is the case thatA ≥ 0, and the
continuity of the density functionf guarantees thatB is strictly larger than zero. Thus, we obtain

DUT(M) = argmax
l∈K

k∑

t=1

l(t)
E[U (t)] −E[U (1)]

E[U (k)] −E[U (1)]
. ‖

Proof of Theorem3.2. Denote byFt+1,t thedistribution function of the random variableU (t+1)−U (t), 1 ≤ t ≤
k−1. Theorem 5.1 inBolandet al.(2002, p. 616) shows that if the density functionf is increasing, the random variable
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U (t) −U (t−1) stochasticallydominates the random variableU (t+1)−U (t). That is, 1− Ft,t−1(u) ≥ 1− Ft+1,t (u) for
all u ∈ I . Then, if f is increasing, it follows thatE[U (t) −U (t−1)] =

∫
I (1− Ft,t−1(u))du ≥

∫
I (1− Ft+1,t (u))du =

E[U (t+1) −U (t)], 2 ≤ t ≤ k−1. Now, it is easy to see that,

E[U (t) −U (t−1)] ≥ E[U (t+1) −U (t)] ⇒ E[U (t)] −E[U (t−1)] ≥ E[U (t+1)] −E[U (t)]

⇒
E[U (t)] −E[U (t−1)]

E[U (k)] −E[U (1)]
≥
E[U (t+1)] −E[U (t)]

E[U (k)] −E[U (1)]

⇒ St
UT − St−1

UT ≥ St+1
UT − St

UT.

This proves that, whenf is increasing,DUT is a concave scoring rule. The claim that, whenf is decreasing,DUT is a
convex scoring rule is analogous, and hence, it is omitted.‖

The following lemma will be useful in Theorems3.3and3.5.

Lemma A.1 For any k, and for every1 ≤ t ≤ k, (1− F(t)(u)) = exp
(
−
∫ u
0 z(t)(v)dv

)
.

Proof of LemmaA.1. Recall thatz(t)(u) = f (t)(u)

1−F(t)(u)
. Therefore, we can write

∫ u

0
z(t)(v)dv =

∫ u

0

f (t)(v)

1− F(t)(v)
dv =

∫ u

0
−

d(l n(1− F(t)(v)))

dv
dv.

Given that 1− F(t)(0) = 1, it follows thatln(1− F(t)(0)) = 0 and therefore,
∫ u

0
−

d(l n(1− F(t)(v)))

dv
dv = −ln(1− F(t)(u)).

Consequently, (1− F(t)(u)) = exp
(
−
∫ u
0 z(t)(v)dv

)
, and the claim follows. ‖

Proof of Theorem3.3. By definition,

E[M Nl (Ul ) | M ] = E[min
i ∈N

Ul
i | M ] =

∫

I
P(min

i ∈N
Ul

i > u | M)du.

Given that the random variables{Ul
i }i ∈N,l∈K arei.i.d., the latter is equal to

∫

I
P(min

i ∈N
Ul

i > u | M)du =
∫

I
P(min

i ∈N
Ul

i > u | Ml )du

=
∫

I

∏

i ∈N

P(Ul
i > u | ml

i )du.

The latter expression can be formulated in terms of the distribution functions of the respective order statistics. Hence,
∫

I

∏

i ∈N

P(Ul
i > u | ml

i )du =
∫

I

∏

i ∈N

(
1− F(ml

i )(u)
)
du

=
∫

I

k∏

t=1

(
1− F(t)(u)

)l(t)du.

By LemmaA.1, we know that the distribution function of an order statistic can be expressed in terms of the satiation
rate of that order statistic. Thus, we can write the last product as a product dependent on the satiation rates:

∫

I

k∏

t=1

(1− F(t)(u))l
(t)

du =
∫

I

k∏

t=1

exp

(
−
∫ u

0
z(t)(v)dv

)l(t)

du

=
∫

I
exp



−
∫ u

0

k∑

t=1

l(t)z(t)(v)dv



du.

Therefore,

DMN(M) = argmax
l∈K

∫

I
exp



−
∫ u

0

k∑

t=1

l(t)z(t)(v)dv



du. ‖
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Proof of Theorem3.4. Consider the approximation off (t)(u) through the exponential density function
1

E[U (t)]
exp

(
− 1
E[U (t)]

u
)
. It is straightforward to see that, for every positiont , the satiation rate of such an exponential

function is constant:
1

E[U (t)]
exp

(
− 1
E[U (t)]

u
)

1−
(
1−exp

(
− 1
E[U (t)]

)) = −
1

E[U (t)]
.

Then,we can rewrite the result of Theorem3.3as

E[M Nl (Ul ) | M ] =
∫

I
exp



−
∫ u

0

k∑

t=1

l(t)z(t)(v)dv



du

'
∫

I
exp




∫ u

0

k∑

t=1

l(t)
1

E[U (t)]
dv



du

=
∫

I
exp




k∑

t=1

l(t)
1

E[U (t)]
u



du =
1

∑k
t=1 l(t) 1

E[U (t)]

.

Therefore,by the definition of the approximate maximin optimal decision ruleD̃MN, we have

D̃MN(M) = argmax
l∈K

1
∑k

t=1 l(t) 1
E[U (t)]

= argmin
l∈K

k∑

t=1

l(t)
1

E[U (t)]

= argmax
l∈K

A−
∑k

t=1 l(t) 1
E[U (t)]

B
,

wherethe last equality holds wheneverA ≥ 0 andB > 0. In particular, we can use the valuesA = 1
E[U (1)]

and B =
1

E[U (1)]
− 1
E[U (k)]

. It immediately follows thatA ≥ 0, and the continuity off guarantees thatB is strictly larger than
zero. Thus, we obtain

D̃MN(M) = argmax
l∈K

k∑

t=1

l(t)
1

E[U (1)]
− 1
E[U (t)]

1
E[U (1)]

− 1
E[U (k)]

.

Then,D̃MN is a scoring rule with weightsSt
MN =

1
E[U (1)]

− 1
E[U (t) ]

1
E[U (1)]

− 1
E[U (k) ]

= St
UT

E[U (k)]
E[U (t)]

. ‖

Proof of Theorem3.5. Following the same logical steps as in the proof of Theorem3.3, we know that

E[M Xl (Ul ) | M ] =
∫

I



1−
∏

i ∈N

P(Ul
i ≤ u | ml

i )



du

= u−
∫

I

∏

i ∈N

F(ml
i )(u)du.

By the change of variable, we canwrite

u−
∫

I

∏

i ∈N

F(ml
i )(u)du = u−

∫

I

∏

i ∈N

(1− F̂(k−ml
i +1)(̂u))dû,

andtherefore,

u−
∫

I

∏

i ∈N

(1− F̂(k−ml
i +1)(̂u))dû = u−

∫

I

k∏

t=1

(1− F̂(k−t+1)(̂u))l
(t)

dû.

LemmaA.1 guaranteesthat

u−
∫

I

k∏

t=1

(1− F̂(k−t+1)(̂u))l
(t)

dû = u−
∫

I

k∏

t=1

exp

(

−
∫ û

0
ẑ(k−t+1)(v)dv

)l(t)

dû

= u−
∫

I
exp



−
∫ û

0

k∑

t=1

l(t )̂z(k−t+1)(v)dv



dû
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andhence

DMX (M) = argmax
l∈K



u−
∫

I
exp



−
∫ û

0

k∑

t=1

l(t )̂z(k−t+1)(v)dv



dû





= argmin
l∈K

∫

I
exp



−
∫ û

0

k∑

t=1

l(t )̂z(k−t+1)(v)dv



dû. ‖

Proof of Theorem3.6. The same reasoning as applied in the proof of Theorem3.4tells us that

D̃MX (M) = argmin
l∈K

1
∑k

t=1 l(t) 1
E[Û (k−t+1)]

= argmax
l∈K

k∑

t=1

l(t)
1

E[Û (k−t+1)]
.

Normalizingthe scores to lie in the unit interval, we obtain

D̃MX (M) = argmax
l∈K

k∑

t=1

l(t)
1

E[Û (k−t+1)]
− 1
E[Û (k)]

1
E[Û (1)]

− 1
E[Û (k)]

.

Clearly, D̃MX is a scoring rule with weights

St
MX =

1
E[Û (k−t+1)]

− 1
E[Û (k)]

1
E[Û (1)]

− 1
E[Û (k)]

=
E[Û (k)] −E[Û (k−t+1)]

E[Û (k)] −E[Û (1)]

E[Û (1)]

E[Û (k−t+1)]
.

Given that, by construction, for every 1≤ t ≤ k, E[U (t)] = u−E[Û (k−t+1)], we can write

St
MX = St

UT
u−E[U (k)]

u−E[U (t)]
. ‖
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