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1. Practical Implementation of T -RUM

We now show how to implement the T -RUM in practice, discussing each of the steps

required for the analysis of a dataset. We use the experimental dataset analyzed in

Apesteguia and Ballester (2021) that involves choices over lotteries and, since the pur-

poses are purely expository of the framework, we adopt the most convenient empirical

implementation strategy, namely, we assume that all decisions are made following the

same distribution over CRRA expected utility types. To emphasize, the selection of

expected utilities with CRRA monetary utilities, and the consideration of aggregate

data with the assumption that all individuals are equally stochastic has only an illus-

trative purpose; we simply aim for a better understanding of how to implement our

results in a given economic setting.

We start by describing the dataset. Eighty-seven UCL undergraduates were asked to

choose lotteries from menus of sizes 2, 3, and 5, from the nine equiprobable monetary

lotteries described in Table 1. Each participant faced a total of 108 different menus

of lotteries, including all 36 binary menus; 36 menus with 3 alternatives, out of the

possible 84; and another 36 menus with 5 alternatives, out of the possible 126. Random

individual processes, without replacement, were used for the selection and order of

presentation of the menus of 3 and 5 alternatives, and for the location of the lotteries

on the screen and the monetary prizes within a lottery. There were two treatments,

but for present purposes we merge all the data from the experiment.1
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Table 1. Lotteries

l1 = (17) l4 = (30, 10) l7 = (40, 12, 5)

l2 = (50, 0) l5 = (20, 15) l8 = (30, 12, 10)

l3 = (40, 5) l6 = (50, 12, 0) l9 = (20, 12, 15)

Step 1 (Set of Types). The first step involves the selection of an ordered family of

ordinal preferences {Ut}t∈T . For example, one may start with a well-known family of

utilities that is sufficiently rich, and look for the parameter values that yield indifference

between a pair of alternatives in the dataset. Then, T could be specified by considering

preferences right below and above the parameters that create indifference. Note that,

in T -RUMs, all that matters is the ordinal preference of alternatives, and two utility

functions that are not separated by any of these thresholds are associated with the

same ordinal preference.

Given that our dataset involves lottery choices, here we adopt the most standard

practice and use expected utility with CRRA monetary utilities, where uω(x) = x1−ω

1−ω ,

whenever ω 6= 1, and u1(x) = log x, where ω represents the risk-aversion coefficient.2

Consider every risk aversion coefficient ω for which two lotteries in the experiment

are indifferent. This corresponds to the 29 finite values reported in Columns 2 and

6 of Table 2. Now, to specify the family T consider one utility in each of the 30

intervals determined by these values. Notice, moreover, that this implies that these

30 ordinal preferences account for all the possible CRRA ordinal preferences, given

the set of lotteries. Columns 3 and 7 in Table 2 describe the ordinal preferences per

type, beginning with the preference of the first type and then specifying the pair(s) of

alternatives that flip from the preference order of the previous type.

Step 2 (Ordered domain). Next, it is necessary to check whether the domain of

menus is ordered, given the selected family of utilities. Thus, one needs to identify in

each menu j ∈ J and for every type t ∈ T the alternative x ∈ Aj that is maximal.

Now, for every pair of maximal alternatives in a menu, one could check whether there

is a unique t∗ ∈ T \ {T} such that one alternative is preferred to the other if, and only

if, t ≤ t∗. Alternatively, one could follow Claim 1 in the characterization theorem and

2Since lotteries l2 and l6 involve 0 payoffs, we assume a small fixed positive background consump-

tion.
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Table 2. Preferences and Estimation Results

t ω Ut ψ t ω Ut ψ

1 -4.148 2-6-3-7-4-8-5-9-1 0.1166 16 0.374 (7,2) 0

2 -0.518 (1,9) 0 17 0.408 (8,2) 0

3 -0.313 (3,6) 0.1009 18 0.443 (9,2) 0.0915

4 -0.083 (4,7) 0 19 0.516 (4,3),(8,7) 0.0079

5 0.065 (5,8) 0 20 0.607 (6,2) 0

6 0.154 (4,6) 0 21 0.652 (5,3),(9,7) 0

7 0.209 (1,8) 0 22 0.808 (1,3) 0

8 0.229 (3,2),(7,6) 0.0561 23 0.844 (8,3) 0

9 0.258 (5,6) 0 24 1.000 (9,3) 0.1388

10 0.262 (1,6) 0.0274 25 1.124 (5,4),(9,8) 0

11 0.273 (5,7) 0 26 1.309 (1,4) 0

12 0.339 (4,2),(8,6) 0 27 2.000 (7,3) 0.0497

13 0.342 (1,7) 0 28 2.826 (9,4) 0.0489

14 0.358 (5,2),(9,6) 0 29 4.710 (1,5) 0

15 0.363 (1,2) 0 30 ∞ (8,4) 0.3622

λ: 0.2516 log-likelihood: -10.7168

the discussion of interval domains in Section 4.3, and check whether, for every menu

j ∈ J and alternative x ∈ Aj, T (x, j) is an interval.

It is routine to check that our domain of menus is ordered, given our set of types.

Step 3 (Identifiability). Having specified {Ut}t∈T and shown that the domain is

ordered, we now obtain the set of fully identifiable types T I . To do this, it is enough

to determine those types that are the largest maximal type for an alternative in a

menu. Given the ordered domain, it is sufficient to select every type whose maximal

alternative in a menu is different from that of the next type.

In our case, we have selected all the ordinal CRRA preferences for the lotteries

involved in the experiment, and, since our dataset includes all the binary menus, all

30 types are identifiable.

Step 4 (Characterizing property). In the main result of the paper we show that T -

Monotonicity is a necessary and sufficient property for T -RUMs. The analyst may be
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interested in evaluating whether the property is satisfied within the sample. In Section

4.2 we provide a procedure for verifying this property in practice. If the property is

fully satisfied, then the analyst can directly obtain a distribution over the type space

that is consistent with the observed frequencies, as explained in the proof of Theorem

1, immediately after Claim 2.

In general, there are two possible relevant violations of T -Monotonicity. The first,

which involves the choice of dominated alternatives. This type of violation cannot be

explained by sampling issues, and hence, if observed, the appropriate approach involves

the use of the trembling version of the model, studied in Section 5. In this case, one

can work with the conditional choice probabilities p̄ defined in Section 5, and check

whether T -Monotonicity is satisfied for p̄. Again, if T -Monotonicity holds over p̄, the

analyst can obtain a distribution over types that is consistent with the conditional

choice data.

T -Monotonicity can also be violated in other ways, perhaps due to finite sampling, as

studied in Section 6. This can be evaluated by focusing on the conditional choice prob-

abilities p̄ introduced in Section 5, and analyzing T -Monotonicity using the procedure

described above.

In our dataset, it is rather direct that T -Monotonicity holds neither over the ob-

served choice probabilities nor over the conditional ones. In the case of the former,

there are several menus for which some alternatives are not maximal for any type but

are nevertheless chosen in the data. In the binary menu {l5, l9}, for example, l5 first-

order stochastically dominates l9 and l9 is chosen with probability .17. In the case of

the latter, consider the binary menus {l4, l7} and {l2, l8}. The riskier lottery, l7 (respec-

tively, l2), is maximal for types up to type 3 (respectively, type 16). T -Monotonicity

requires that the choice probability of l7 in {l4, l7} must be lower than that of l2 in

{l2, l8}. However, the observed choice probabilities are .38 and .22, respectively, which

violates the property.3

Step 5 (Estimation). When T -Monotonicity is not satisfied, an estimation exercise

will find the closest distribution over types, as outlined in Section 6. This requires the

selection of a particular estimator from the broad class of estimators shown in Section

6 to be strongly consistent. In addition, depending on whether dominated alternatives

3Note that these choice probabilities also apply to the conditional ones, since there are no domi-

nated options in these menus.
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are selected, the estimation may involve the adoption of the trembling version of the

model of Section 5. When this is the case, the analyst needs to decide which trembling

structure to be adopted from the general class of specifications used in Section 5.

For our analysis, we adopt the standard maximum likelihood estimator, and, since

dominated alternatives are observed to be chosen, we implement the trembling version

of the model. We choose to go with the simplest version and use a constant tremble

parameter across all choice problems, and a uniform selection of non-maximal alter-

natives.4 Table 2 reports the estimated densities of the T -RUMT (Columns 4 and

8). The results reveal a high degree of heterogeneity, including a very significant pro-

portion of highly risk-averse types. The percentage of types with close to or higher

than logarithmic curvature (type 24 and above) is 60%, with more than a third of all

decisions belonging to the highest type, type 30, which exhibits risk-aversion levels as

high as 4.7 and above. The results also show that a relevant proportion of the decisions

reflect highly risk-seeking attitudes (22%), and even extreme risk-seeking, (12% of all

decisions correspond to the lowest type, type 1, that is, risk-aversion coefficients below

−4.8). The estimated probability of tremble is .25, thus confirming the behavioral

relevance of non-maximal alternatives.

Step 6 (Statistical testing). The final step is the statistical testing of the model,

as elaborated in Section 6. This involves comparing the observed choice frequencies

with the predictions given by the estimated model, using the Pearson statistic. The

analysis can be performed at the menu level with |Aj|−1 degrees of freedom, or at the

aggregate level with
∑

j∈J |Aj| − J degrees of freedom.

In the dataset, based on the Pearson statistic per each of the 246 menus, we are

unable to reject the null hypothesis of equality between observed and predicted choices

in 72% (85%) of the menus at the 5% (1%) significance level.5 Note that the degrees

of freedom in the individual menus are 1, 2 and 4 for the menus with 2, 3 and 5

alternatives. The aggregated Pearson statistic across menus enables us to reject the

null hypothesis of equality at conventional significance levels. In this case, the degrees

of freedom are 708.

4The data and estimation programs are available for use on our websites.
5Recall that the purpose of this exercise is to illustrate the applicability of the model, and for this

purpose we chose the simplest possible implementation, involving a representative agent approach

with CRRA expected utilities. Naturally, accounting for inter- and intra-personal variability and

using other families of utility functions may improve these results.
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