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Abstract. We establish the testable implications of ordered random utility models

under nonparametric, semi-nonparametric, and parametric assumptions. After char-

acterizing these models in a continuous setting and in the absence of fundamental

parametric restrictions, we show that assumptions about the type distribution alone

are immaterial, while assumptions about the map linking types to utilities are rele-

vant only insofar as they restrict the class of utilities at stake. Importantly, the joint

presence of such parametric assumptions, as is common practice, further restricts the

empirical content of the model. We then provide a characterization of commonly-

used parametric ordered-logit models. We apply our results, both theoretically and

empirically, to economically relevant settings.
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1. Introduction

In many settings, decision problems are ordered and variation in choices can be
intuitively explained as the result of variation in an underlying ordered latent variable.
This simple structure is a fundamental instrument for empirical research, spanning
diverse economic areas such as health, finance, labor, welfare, management, insurance,
political economy, networks, and gender.1 To formalize this notion, consider a latent
variable on the real line, and let us refer to each of its values as a type. In what
we refer to as Ordered Random Utility Models (ORUMs), choice data is the result of
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the interaction of the following two components: (i) a type-utility map where higher
types are associated with utility functions generating higher choices, and (ii) a type
distribution describing the prevalence of each type.

The empirical use of ORUMs often involves a number of parametric assumptions
on one or both of the components of the model. To illustrate, regarding the first
component, applications to political or insurance choices are often built by referring
to type t as the Euclidean utility centered at t or the expected utility with a relative
risk aversion coefficient equal to t, respectively.2 Regarding the second component, the
most common assumptions may involve logistic (or Gaussian) variation in the latent
variable, leading to the so-called ordered-logit (or ordered-probit) models. And in many
cases, both components are jointly restricted, leading to a fully parametric model. It is
then critical to carefully examine when and how parametric specifications bear down
on the space of datasets that can be explained by ORUMs and, in each case, what type
of properties characterize the corresponding model. This is the purpose of this paper.

We present our results within the context of cumulative choice data over an ar-
bitrary collection of continuous decision problems. We start, in Section 3, with the
nonparametric case and show that the model can be understood by means of a stan-
dard, deterministic notion of rationalizability. In a nutshell, suppose that for each
probability value p ∈ (0, 1), we construct from data the quantile choice function cp,
i.e., cpj represents the alternative that first attains cumulative choice above p in deci-
sion problem Aj. Theorem 1 shows that data can be explained by an ORUM if and
only if every quantile choice function is acyclical. The proof is rather direct but, fun-
damentally for our purposes, it is instrumental for understanding the exact content
of semi-nonparametric ORUMs and flexible enough to be used in a variety of applied
settings.

Section 4 is devoted to the semi-nonparametric analysis. Building upon the proof
of Theorem 1, we show in Theorem 2 that constraining only the type distribution
comes at no cost; as long as the type-utility map is not fixed, the analyst can freely
reduce the dimensionality of the statistical distribution describing the latent variable.
We then consider the empirical content of semi-nonparametric models that constrain
the type-utility map but not the type distribution. Naturally, this restriction is rel-
evant because we are now forced to use only the sub-class of utilities specified by
the parametrization, and this limits our ability to explain patterns of choice across
menus. However, we show in Theorem 3 that, modulo the sub-class of utilities in
the parametrization, the assumption brings no further cost. Formally, if the type dis-
tribution remains unrestricted, fixing the type-utility map merely requires properly
adjusting the deterministic rationalizability property used in Theorem 1 for it to apply
to the corresponding sub-class of utilities in the parametrization.

2This type of parametric restriction is often referred to as semi-nonparametric (see, e.g.,

Barseghyan, Molinari, and Thirkettle (2021)). To simplify our exposition, we use the same term

when the dimensionality of one, but not the other, component is constrained.
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Section 5 brings the fully parametric analysis. In essence, fixing both the type-
utility map and the type distribution fundamentally restricts the model, and does so
in ways that cannot be readily described, even with the adjustment in Theorem 3. As
a result, we are forced to analyze the properties of parametric ORUMs independently.
Given the preponderance of ordered-logit models in the empirical literature, we study
ORUMs in which, having fixed a type-utility map, the type distribution is assumed
to be logistic.3 We show in Theorem 4 that two simple properties, which we call
corner extremeness (CE) and cumulative log-odds additivity (CLA), characterize these
models. CE imposes that a corner alternative can receive a non-null choice probability
if and only if this alternative is not dominated, i.e., considered sub-optimal by all
utilities in the class. CLA uses the well-known notion of cumulative log-odds, i.e., the
log-ratio of masses below and above a given alternative. The property states that equal
sums of types must lead to equal sums of cumulative log-odds. Theorem 4 establishes
the first characterization result of ordered-logit models, giving foundations to a popular
tool in the empirical literature.

To illustrate our results from a more applied point of view, we study in detail two
distinct applications to choices over arbitrary collections of linear budget sets: the
first involving lotteries, and the second involving inter-personal allocations. Section 6
elaborates on the application to lotteries, with Corollary 1 providing nonparametric
(as in Theorem 1) and semi-nonparametric results (as in Theorem 3) for ORUMs using
expected utilities and CRRA expected utilities, respectively. Building upon Theorem
4, Corollary 2 characterizes the ordered-logit model that arises from logistic variation
of the CRRA coefficient. Section 7 reproduces this analysis for the case of inter-
personal allocations, where the semi-nonparametric and parametric cases adopt the
CES functional form in modeling variation in altruism.

Sections 6 and 7 also provide comprehensive guidelines on how to bring the afore-
mentioned theoretical results to data. We showcase our guidelines using simulated
choice data and provide a step-by-step description that elaborates on: (i) the handling
of data, (ii) the study of the nonparametric model, expanding on the computational
convenience of the analysis, (iii) the study of the semi-nonparametric model, including
statistical testing, and (iv) the study of the parametric model, its structural estimation,
and its statistical testing.

2. Related literature

This paper contributes to the study of stochastic choice models in general, and to the
literature on random utility models (RUMs) in particular. Classic works include Luce
(1959), Block and Marschak (1960), and McFadden and Richter (1990). Here, we study
RUMs with an ordered structure; see Small (1987) for an early study, Train (2009) for

3The majority of works cited in footnote 1 adopt the ordered-logit format, which gives a good

sense of the popularity of the model.
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an econometric treatment, and Greene and Hensher (2010) for the applicability of this
type of model to a variety of economic questions. RUMs with an ordered structure
have been theoretically discussed from different points of view in Apesteguia, Ballester,
and Lu (2017), Barseghyan, Molinari, and Thirkettle (2021), Turansick (2022), Valka-
nova (2022), Apesteguia and Ballester (2023), Filiz-Ozbay and Masatlioglu (2023),
Masatlioglu and Vu (2023), Petri (2023, 2024), and Yildiz (2024).

Part of this paper is devoted to establishing choice-based foundations for ORUMs
with varying degrees of parametric assumptions.4 Apesteguia, Ballester, and Lu (2017)
provide the first axiomatization of a RUM with an ordered structure, which they call
SCRUM. Their analysis is discrete and nonparametric, with unrestricted variation over
single-crossing families of utilities. Their main result can be seen as a specific case of
Theorem 1 because, for their analysis to hold, they need to observe data on every subset
of a linearly ordered set X. Also within a discrete setting, Apesteguia and Ballester
(2023) relax data requirements by working, as in the current paper, with arbitrary
domains of ordered menus. Their main results, however, operate exclusively in the
semi-nonparametric realm, in which the type-utility map is fixed. The present paper
contributes to this literature in several ways. First, we establish axiomatic foundations
for nonparametric, semi-nonparametric, and parametric versions of ORUMs, all with
arbitrary data. Second, by adopting a common setting across all parametric versions,
we are able to establish the differential empirical implications of parametric assump-
tions. Third, we provide, for the first time, an axiomatic treatment of the often-used
parametric ordered logit, an analysis that requires the development of novel techniques
drawn from the statistical literature. Finally, we adopt the empirically relevant but
severely understudied continuous setting.5

Another relevant strand of literature pertains to the nonparametric identification of
models that are non-additive in the error term. The connection is most evident in
Matzkin (2003), where a model of the form Y = m(X,α), with observables X, Y and
a non-additive unobserved error term α, is considered. The function m is assumed
to be monotone in the latent variable α. Our framework follows this approach by
considering a function m that selects the element Y optimizing the utility function
of type α, given the menu characteristics X.6 The main result in Matzkin (2003)

4The literature providing choice-based foundations for other stochastic models is extensive. Some

recent contributions include Gul and Pesendorfer (2006), Manzini and Mariotti (2014), Caplin and

Dean (2015), Fudenberg, Iijima, and Strzalecki (2015), Matejka and McKay (2015), Brady and Re-

hbeck (2016), Ahn, Echenique, and Saito (2018), Lu and Saito (2018), Cerreia-Vioglio, Dillenberger,

Ortoleva, and Riella (2019), Frick, Iijima, and Strzalecki (2019), Natenzon (2019), Cattaneo, Ma,

Masatlioglu, and Suleymanov (2020), Alós-Ferrer, Fehr, and Netzer (2021), Kovach and Tserenjigmid

(2022), or He and Natenzon (2023).
5Our results can also be derived in the discrete choice setting. Appendix B does so and discusses

in more detail the connection with the mentioned papers.
6One of the examples discussed in Matzkin (2003) is that of random demand over linear budget

sets, which is closely related to the settings in our applications.
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relevant to our purposes, Lemma 1, addresses the joint identification of the function
m and the distribution of the error term α; essentially, monotonic transformations of
the pair (m,α) yield the same data. Matzkin (2003) uses this result to explore several
useful normalizations of the pair (m,α) across a range of econometric models, including
cases where the distribution of α is selected and fixed. Despite the technical differences
between Matzkin’s paper and ours, the logic of her Lemma 1 is crucial in extending our
Theorem 1 to our Theorem 2; we elaborate later in the paper on how Theorem 2 can
be viewed as a combination of Theorem 1 and Matzkin’s normalization analysis. Since
the primary focus of the current paper is characterization rather than identification,
we contribute to this literature in several ways. Most notably, we provide a precise
description of the empirical content of nonparametric, semi-parametric, and parametric
models, both in abstract terms and in applied contexts such as risk and altruism.

Another important strand of literature concerns the analysis of Random Utility Mod-
els (RUMs) in consumer settings. These works aim to simplify the empirical analysis
of RUMs.7 Although there are exceptions, such as Hoderlein and Stoye (2014, 2015),
most of the literature focuses on general distributions of types, which are not neces-
sarily ordered. A central message from this literature, pioneered by Kitamura and
Stoye (2018), is that determining stochastic rationalizability in a demand setting can
be accomplished by analyzing a finite set of points from the cumulative distribution
functions that describe the data.8 The technical details in Theorem 1, along with the
applied results in Corollaries 1 and 3, and the political economy example discussed in
Section 3.1, shed light on the possibility of extending this principle to other settings.
In essence, the finite number of checks arises from the type of rationalizability used in
consumer settings (e.g., via monotone and convex preferences) and the specific struc-
ture of linear budget sets. This principle does not extend to other menus and utilities.
As we discuss in Section 3.1 using the case of political domains with single-peaked
preferences, a finite number of checks may be insufficient when menus overlap. Fur-
thermore, even with linear budget sets, if more structured utilities are considered (e.g.,
expected utilities in risk domains), the linkage of marginal utilities across all possible
consumption bundles and budget sets requires a comprehensive analysis of quantiles.
However, even in cases where all quantiles must be analyzed, ORUMs retain computa-
tional tractability due to the ordered structure of utilities and choices. We contribute
to this literature by emphasizing this important aspect of the problem and providing
new characterization results.

7Recent papers bridging the gap between choice-based foundations and the econometric imple-

mentation of stochastic models include Dardanoni, Manzini, Mariotti, and Tyson (2020), Aguiar and

Kashaev (2021), Apesteguia and Ballester (2021), and Kovach and Tserenjigmid (2022).
8See Kashaev, Aguiar, Plávala, and Gauthier (2023) for the application of this technique to the

study of dynamic RUMs.
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3. Nonparametric ORUMs

We focus on a setting involving linear, continuous, decision problems for three key
reasons. First, while ubiquitous in applications, the theoretical foundations of models
adopting this setting remain under-explored in the stochastic choice literature. Second,
the continuous structure facilitates theoretical treatment and makes the results easier
to interpret. Third, as demonstrated in the applications in Sections 6 and 7, our results
apply directly to various classic economic applications involving choices in linear budget
sets. Nevertheless, our analysis extends readily to other settings involving non-linear
menus, as briefly discussed in Section 8, or discrete menus, as we ellaborate in Appendix
B.

Let X ⊆ RK be a convex space of alternatives. There is a collection {Aj}Jj=1 of
decision problems, or menus, that are ordered line segments of X. That is, each menu
Aj consists of two corner alternatives, xj and xj, and their convex combinations, i.e.,

Aj = {(1− a)xj + axj : xj, xj ∈ X and a ∈ [0, 1]}.

Thus, any alternative x ∈ Aj is determined by its relative position in the line segment,
aj(x) ∈ [0, 1], which is the unique value such that

x = (1− aj(x))xj + aj(x)xj.

Using the relative position of alternatives in menus, we assume that choice data corre-
sponds to a collection F = {Fj}Jj=1 of cumulative distribution functions (CDFs) over
the interval [0, 1]. That is, given menu Aj and value a ∈ [0, 1], the value Fj(a) describes
the choice mass of alternatives x in menu Aj for which aj(x) ≤ a. We assume that
each CDF is continuous on [0, 1) and strictly increasing.9

To discuss ORUM-rationalizability, let U denote the class of relevant utility functions
on X. Assume for now that U is given by all utility functions that produce a unique
maximizer in each menu. Given a utility function U ∈ U , let aj(U) represent the
a-value of the unique alternative in menu Aj that maximizes utility according to U .10

An ORUM has two components:

(1) Ordered-choice: The model is based on an ordered set of latent types (or simply
types), represented by R, with each type associated with a utility function such
that higher types select higher alternatives. Formally, there is a type-utility map
γ : R → U such that, for every menu Aj, the map of maximizers aj(γ(t)) is
continuous and increasing in t. In alignment with our assumption on data, we

9Notice that this allows for mass at any of the corner points of the menu, as commonly observed

in many applications. Continuity is a standard technical assumption, and strict monotonicity is

analogous to the usual positivity assumption in discrete choice models.
10Expressions such as aj(x) and aj(U) will be used interchangeably, though there is no risk of

confusion. The former refers to the position of an alternative x in menu Aj , while the latter refers to

the position of the alternative that maximizes utility U in the same menu. As a result, aj(x) = aj(U)

conveniently captures the idea that x is the maximizer of utility U in menu Aj .
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work with maps γ that generate maps of maximizers that are strictly increasing
over the (menu-dependent) set of interior types, i.e., those leading to a ∈ (0, 1).
Consequently, for every menu Aj and every a ∈ (0, 1), there exists a unique
type, denoted by tγj (a), for which aj(γ(tγj (a))) = a.11 We denote the class of all
such maps as Γ.

(2) Stochasticity: The type making choices is subject to randomness. Formally,
there is a type distribution in the form of a CDF G : R → [0, 1]. We as-
sume that G is continuous and strictly increasing, with limt→−∞G(t) = 0 and
limt→∞G(t) = 1. We denote the class of such CDFs as G.

In each menu, the distribution of choices is generated by randomizing over the set of
types according to G, and then maximizing according to the associated utilities given
by γ. Formally, we say that data F is ORUM-rationalizable with type-utility map γ
and type distribution G whenever, for every menu Aj and every a ∈ (0, 1),

Fj(a) = G(tγj (a)).

That is, for every menu and interior alternative, the observed cumulative choice mass
at that alternative coincides with the mass of types that maximize below it. Given this,
the continuity assumptions guarantee that the mass observed at the corners matches the
mass of types maximizing at those corners, too. ORUMs clearly represent a restriction
of the more general RUMs, with the mass distributed over a unidimensional, ordered
collection of utilities.

We now provide a simple characterization of data that is ORUM-rationalizable.
This property can be expressed in terms of a deterministic property of quantiles. For
every probability value p ∈ (0, 1) and every menu Aj, the basic assumptions on data
guarantee that there is a unique alternative cpj ∈ Aj such that

cpj = arg min
x:Fj(aj(x))≥p

aj(x).

The choice function cp = {cpj}Jj=1 is called the p-quantile choice function, and, following
standard deterministic notions, we say that the p-quantile choice function cp is acyclical
if for every collection (Aj1 , c

p
j1

; . . . ;AjK , c
p
jK

) such that cpjk+1
∈ Ajk , k ∈ {1, . . . , K − 1},

it holds that cpj1 6∈ AjK . In other words, the concatenation of revealed preferences at
quantile p produces no cycle. We say that F satisfies Quantile Acyclicity whenever
every cp is acyclical.

Theorem 1. F is ORUM-rationalizable if and only if F satisfies Quantile Acyclicity.

ORUM-rationalizability is thus equivalent to each p-quantile choice function being
acyclical. The intuition for the sufficiency part is as follows: for every p ∈ (0, 1), the
acyclicity of the p-quantile choice function cp allows us to identify a utility function Up

that rationalizes cp. Choices must increase across different levels of p due to the quantile

11That is, tγj is just the inverse of the map aj ◦γ, which is bijective on the set of interior alternatives.



8

definition of cp. Consequently, data can be explained by randomizing uniformly over
these quantile utilities. To construct the type-utility map γ and the type distribution
G, we project the interval (0, 1) onto the real line using a bijection, and consider the
corresponding induced distribution over the reals. We do this via the standard logistic
transformation. Other transformations could lead to different parameterizations, and
we expand on this in Section 4.

3.1. A political economy example. We propose a simple political economy example
in order to illustrate Theorem 1, the practical testing of the characterizing property,
the comparison of ORUMs with the prominent Luce model, and a discussion on the
handling of substitution patterns by the model.

Suppose that X = R, and let U be the class of strictly quasi-concave utility functions
on X. Following the analysis of Moulin (1984), menus will be closed intervals of the real
line. ORUM-rationalizability requires the consideration of a type-utility map in which
types are assigned strictly quasi-concave utilities, with the family being continuous and
strictly increasing in the peaks. When a type distribution is assumed, this induces a
distribution of peaks, which is all that matters for choices.

An important aspect of this application, as in many other economic settings, is that
the family U is assumed to have some minimal structural property. For example, mono-
tonicity in consumption settings, independence in risk settings, or strict quasi-concavity
in the current example. Naturally, this requires strengthening the revealed preference
notion that defines Quantile Acyclicity. In the present context, strict quasi-concavity
implies that, when considering the revealed preference at quantile p, we learn more
than the usual cpj is preferred to every x ∈ Aj. Specifically, if cpj 6= xj, we infer the
ranking of all alternatives greater than or equal to cpj , with a similar reasoning for alter-
natives below cpj whenever cpj 6= xj. This revealed information should be incorporated
into the acyclicity analysis. With this in mind, the rest follows: the rationalizability
of cp requires the absence of cycles in the concatenation of these strengthened revealed
preferences, and ORUM-rationalizability is equivalent to the corresponding version of
Quantile Acyclicity.

Now, suppose that choice data is generated by a uniform distribution of peaks on
(0, 1), with no mass outside this interval. Consider two menus, A1 = [0, 1] and A2 =
[0, 1

2
]. Trivially, the data generated by the ORUM is uniform on A1, with no mass

at the corners. When considering menu A2, every type with a peak above 1
2

selects

the alternative x2 = 1
2
, implying that a mass of 1

2
is uniformly distributed in the

interior, and a mass of 1
2

is observed at the upper corner. To see the role of our
characterizing property in this setting, note that with two menus related by inclusion,
Quantile Acyclicity simply implies asymmetry, i.e., the smaller menu cannot contradict
the revelations of the larger one. In particular, when p ∈ (0, 1

2
), since cp1 = p ∈ A2 ⊆ A1,

we must also have cp2 = p. As a result, for menu A2, the mass of choices in I1 = [0, p]
must be p. By considering p approaching 1

2
, the corner mass described above is derived.
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Quantile Acyclicity requires every quantile to be rationalizable. Depending on the
application, it may be sufficient to consider a finite number of checks. This is the case,
for example, in linear budget sets involving consumption or altruism, as we discuss in
Section 7. Yet, it can be seen that this feature results from the non-overlapping nature
of linear budget sets and the family of utilities at stake. The present example shows
that finite checks are not sufficient in some cases. Essentially, ORUM-rationalizability
requires that the revealed distribution of peaks in (0, 1

2
) is exactly the same for A1

and A2, a feature that cannot be tested with a finite number of checks on F1 and F2.
The analysis of expected utility in Section 6 constitutes another example where a finite
number of quantiles is insufficient.

We now compare ORUMs to the best-known restriction of RUMs, the Luce model. A
continuous version of the Luce model producing uniform choices in A1 with no mass at
the corners requires all alternatives to be indifferent. Hence, contrary to our example,
one should also observe uniform choices in A2 with no mass at the corners. From the
point of view of the characterizing property of the Luce model, consider the continuous
version of IIA, where the ratio of choice probabilities between two intervals does not
depend on the menu to which they belong. IIA then requires that the ratio of choice
probabilities for intervals I1 = [0, p] and I2 = [p, 1

2
] must be the same in both menus.

That is, for menu A2, the ratio of mass of choices in I1 over I2 should also be p
1
2
−p , and

thus the mass of choices belonging to I1 should be equal to p

p+ 1
2
−p = 2p, leading to the

uniform F2 with no mass at the corners.

Importantly, note that ORUM is built on the basis of mass over ordered types, which
endogenously embeds the ordered substitution patterns contained in the space of alter-
natives and the family of utilities under consideration. In contrast to the Luce model,
in ORUMs, the mass of the removed alternatives [1

2
, 1] is not uniformly distributed

among the rest but follows the substitution pattern induced by the ordered structure
of the real line and the strictly quasi-concave utilities of types. When these high alter-
natives are removed, high types concentrate on the highest available alternative in A2.
By ignoring the ordered structure underlying the political application, the Luce model
struggles to accommodate these patterns.

4. Semi-nonparametric ORUMs

Empirical work usually involves a variety of parametric assumptions, either through
the adoption of a specific type-utility map or by working with a particular class of
type distributions. These assumptions may, for example, facilitate computational es-
timation or aid in interpreting results. In this section, we briefly discuss the potential
implications of restricting each of these channels separately. We first consider the case
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in which the dimensionality of the type distribution is reduced.12 The next result fol-
lows directly from Theorem 1 and shows that such restrictions alone have no further
empirical implications.

Theorem 2. Let G ∈ G. F is ORUM-rationalizable with type distribution G if and
only if F satisfies Quantile Acyclicity.

In other words, parametric restrictions on the type distribution alone have no em-
pirical content per se. The reason for this is that an appropriate relabelling of utilities
allows for free modification of the type distribution structure. This can be viewed as
a normalization result, akin to the classical analysis by Matzkin (2003). There, the
focus is on identifying a class of econometric models of the form Y = m(X,α), where
X and Y are observables, α is a non-additive unobserved error, and m in monotone
in α. By considering how the observable choice Y depends on the observable menu of
alternatives X through the unobserved latent variable α and the optimization process
m, it becomes clear that ORUMs belong to this class of econometric models. For our
purposes, the main result in Matzkin (2003) is Lemma 1, which demonstrates that
the distribution of errors can be fixed without loss of generality. This is precisely the
reasoning behind why Quantile Acyclicity is also sufficient for ORUM-rationalizability,
even after fixing the type distribution. Thus, Theorem 2 can be viewed as a direct
combination of our Theorem 1 and Lemma 1 in Matzkin (2003).13

Next, we consider the case in which the type-utility map is fixed. For example, in
the study of decisions under risk, let U represent the general class of expected utilities.
An analyst interested in describing risk aversion levels in a population might fix the
type-utility map such that γ(t) corresponds to expected utility with a constant relative
risk aversion coefficient equal to t.14 This modelling assumption is likely to restrict the
analyst’s flexibility, since the sub-class γ(R) of utilities within the image of γ has a lower
dimension than U . For instance, CRRA utilities may fail to capture across-menu choice
patterns that can only be explained by other expected utility functions. However, the
logic presented in Theorem 1 can be directly applied to this semi-nonparametric case
by appropriately adapting the required revealed preference property on each quantile
of choices to capture the rationalizability by utilities in γ(R). That is, instead of
applying the acyclicity condition, that is relevant when all utilities are considered, we
must strengthen the deterministic concept to apply precisely to the sub-class of utilities
γ(R). In our abstract setting, we refer to this as Quantile γ(R)-Rationalizability. In

12Notice that Theorem 2 below fixes a given type distribution. Since this is inconsequential, the

theorem extends to cases where the type distribution is assumed to belong to a particular family of

distributions, such as in ordered-logit or ordered-probit models.
13Note that the results in this paper are not primarily concerned with identification. Instead, our

goal is to provide necessary and sufficient conditions for all cases, thereby demonstrating the exact

empirical content of these models.
14The CRRA monetary utility function with coefficient t is of the form z1−t

1−t for t 6= 1 and log z for

t = 1, with z > 0.
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Section 6 we examine the CRRA expected utility case in detail, and in Section 7 we
provide another example in the context of altruism with CES utilities.

Theorem 3. Let γ ∈ Γ, with image γ(R). F is ORUM-rationalizable with type-utility
map γ if and only if F satisfies Quantile γ(R)-Rationalizability.

Theorem 3 shows that, modulo the restriction imposed by the assumed sub-family
of utilities, the specific parametrization chosen does not result in any loss of generality.
Once again, we can adapt to any specific labelling of these utilities by finding the exact
type distribution that fits this labelling.

Before concluding, we note that empirical work often involves restrictions on both
components of the model; that is, the analyst typically fixes a specific type-utility map
and imposes some structural property on the type distribution. For example, an analyst
studying risk aversion might fix the CRRA expected utility map and assume logistic
variation. The combination of these two restrictions generates stronger implications,
which we illustrate using the political economy example discussed earlier. This issue
is discussed in greater detail in Section 5.

4.1. A political economy example. We illustrate the semi-nonparametric results
using, again, our political economy example involving the real line and the class
of strictly quasi-concave utilities. For the purposes of this section, we simplify the
rationalizability question by assuming that data is observed over a single interval
A1 = [−k, k]. Notice that, since there is only a single menu, Quantile Acyclicity for
single-peaked preferences trivially holds, and thus any data is ORUM-rationalizable.
In particular, suppose that F1(0) = 1

3
, F1(1

2
) = 1

2
, and lima→1 F1(a) = 4

5
.15 ORUM-

rationalizability can be achieved with any continuous and strictly increasing type-utility
map and type distribution for which the induced CDF of peaks has value 1

3
at −k, 1

2

at 0, and 4
5

at k.

Theorem 2 informs us that we can account for logistic variation of the latent variable
by selecting an appropriate type-utility map. For example, define γ(t) as the utility
function −(x− f(t))2, where f(t) = t

2
whenever t ≥ 0, and f(t) = t whenever t < 0. If

we then select a logistic distribution with location and scale parameters set to 0 and
1, respectively, this model rationalizes F1.

Theorem 3 shows that fixing the type-utility map γ may require an adaptation of the
quantile rationalizability concept. Suppose, for example, that we fix the type-utility
map where type t is assigned the Euclidean utility E(t), defined by −(x−t)2. Euclidean
utilities form a sub-family of strictly quasi-concave utilities, and additional revelations
are possible because, for example, observing an interior choice reveals the ranking of
all alternatives in R. In such cases, we may need to define a deterministic notion of
Euclidean rationalizability. However, with choices over intervals, all that matters is the

15For the present discussion, it suffices to consider the values of F1 at a few points. Therefore, we

will show the rationalization only at these specific points.
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distribution of peaks, and thus the Euclidean restriction becomes inconsequential; the
same deterministic choice behaviors can still be rationalized. In particular, our example
with a single menu remains rationalizable, and to explain the data using E, we simply
need to select a type distribution with CDF values at −k, 0, and k, as discussed above.
The combination of E and the constructed type distribution rationalizes the data.

Now, consider a scenario where both the specific type-utility map E and a restriction
to logistic type distributions are imposed. Under these assumptions, the data F1 is no
longer ORUM-rationalizable. Notice that, given F1(1

2
) = 1

2
, the median value of the

latent variable must be 0. Since the peaks of types −k and k are symmetric with
respect to 0, the logistic assumption would imply that F1(0) = 1− lima→1 F1(a), which
results in a contradiction. Thus, parametric assumptions on both components of the
model lead to consequences beyond those described in Theorem 3, which will be further
analyzed in the next section.

5. Parametric ordered-logit model

As illustrated by our previous example, when parametric restrictions are imposed
on both the type-utility map and the type distribution, the model becomes restricted
in ways that cannot be easily captured by Theorem 1 or the adjustment proposed in
Theorem 3. It is therefore evident that the foundations of parametric models often used
in empirical work, such as ordered-logit models, require more sophisticated properties
that restrict data across quantiles. In this section, we take an initial step toward
describing the exact empirical content of such models. Specifically, we study parametric
ordered-logit models, a popular tool in economics as well as other disciplines such as
political science, sociology, and biology.16

To simplify the analysis, we assume the following richness condition: for any two
menus Aj and Aj′ , there exists a sequence of menus Aj = Aj0 , . . . , Ajk , . . . , AjK = Aj′

such that, for each k ∈ {0, . . . , K − 1}, there exists an interval of types that produce
interior maximizers in both Ajk and Ajk+1

. To motivate this assumption, note that if
at least one of the corner alternatives has no mass, the richness assumption is trivially
satisfied.17 However, if choices at both corners are relevant, the richness condition only
requires that the intervals of utilities generating interior maximizers overlap weakly,
after connecting a chain of menus. For example, in a consumption setting, any pair
of menus should be connected by other menus (likely involving intermediate prices) to
produce the desired overlap.

We now study the parametric ordered-logit model, in which a generic type-utility
map γ : R → U is fixed, and the type distribution is restricted to the logistic family,

16For references to the diversity of economic applications of the ordered-logit model, see the dis-

cussion in footnote 1 of the Introduction.
17This feature is present in the two applications discussed in Sections 6 and 7.
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denoted GL. Recall that a logistic type distribution takes the form

G(τ,σ)(t) =
1

1 + e−(t−τ)/σ
,

where τ ∈ R and σ > 0 are the location and scale parameters.

We now present the key properties of this ordered-logit model, which capture the
requirements on corner and interior alternatives that arise when a logistic distribution
is applied to the given type-utility map γ. The requirement on the corner alternatives
follows from the fundamental properties of Random Utility Models (RUMs). In this
continuous ordered setting, the existence of a single type leading to a corner implies
the existence of an unbounded interval of types with the same property, resulting in a
strictly positive mass for this corner.18

Corner Extremeness (CE). Fj(0) > 0 (respectively, lima→1 Fj(a) < 1) if and only
if there exists t ∈ R such that aj(γ(t)) = 0 (respectively, aj(γ(t)) = 1).

To formulate our second property, consider the cumulative log-odds of any interior
value a ∈ (0, 1), defined as

`j(a) = log

(
Fj(a)

1− Fj(a)

)
.19

It is well known that when data is generated by a logistic distribution with parameters
(τ, σ), the cumulative log-odds `j(a) correspond to the standardized type with a as the

maximizer, i.e., `j(a) =
tγj (a)−τ

σ
. Now, consider two menus and a pair of non-corner

alternatives from each menu. If the sum of the types associated with the first pair of
alternatives equals the sum of the types associated with the second pair, then the sum
of the cumulative log-odds of both pairs should also coincide.20

Cumulative Log-odds Additivity (CLA). Let a, b, a′, b′ ∈ (0, 1) and Aj, Aj′ be
such that tγj (a) + tγj (b) = tγj′(a

′) + tγj′(b
′). Then, `j(a) + `j(b) = `j′(a

′) + `j′(b
′).

Note that when a = b and a′ = b′, CLA implies that the same type must have the
same associated log-odds, and hence the same quantile, in every menu. This implies
that quantiles are rationalized by utilities in γ(R). Importantly, CLA not only imposes
this requirement but also constrains the sum of log-odds for pairs of alternatives.

Theorem 4 shows that these two basic properties, CE and CLA, are not only nec-
essary but also sufficient for data to be ORUM-rationalizable with type-utility map γ
and a type distribution in GL.

Theorem 4. Let γ be any type-utility map. The data F is ORUM-rationalizable with
type-utility map γ and a type distribution in GL if and only if F satisfies CE and CLA.

18This is akin to the extremeness property described by Gul and Pesendorfer (2006).
19This is also called the logit function, which is the inverse of the logistic distribution.
20Since γ is fixed, the mapping from types to alternatives is known, and CLA can thus be verified.
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The proof of the sufficiency part of Theorem 4 involves several steps. First, when
considering the interior alternatives in a given menu, the data immediately induces a
specific CDF over the corresponding interval of types. When relevant, we account for
the censoring produced by corner choices, which are optimal for an unbounded interval
of types. The masses observed at the corners must be appropriately distributed among
all rationalizing types, guaranteed to exist by CE, in such a way that the constructed
CDF over all types satisfies the additivity requirement imposed by CLA for interior
alternatives. We address this using a recursive construction. Second, the ordered-
logit functional form requires us to build upon Theorem 2.1.5 of Galambos and Kotz
(1978). This classical statistical result provides a necessary and sufficient condition
for a single CDF over the real line, that has been assumed to be symmetric about the
origin, to be logistic. We extend this result to our revealed preference setting, where (i)
distributions may have arbitrary means and are not proven to be symmetric, and (ii) we
have a collection of menu-dependent distributions, not yet shown to coincide. Our CLA
property proves sufficient to demonstrate that these menu-dependent distributions are
all logistic and share the same location and scale parameters. Finally, it is important
to note that the parameters (τ, σ) of the logistic type distribution that rationalize the
data must be unique.

5.1. A political economy example. The properties of CE and CLA may seem ab-
stract, but this is primarily because the type-utility map γ has been presented ab-
stractly. Let us return to the parameterized ordered-logit model using the Euclidean
map E. In Section 4.1, we learned that this model restricts data, even with a single
menu.21 With respect to CE, notice that for any menu Aj = [xj, xj], the corner al-
ternatives are always the maximizers for some type (specifically, for types with peaks
below xj and above xj, respectively). Consequently, CE reads as (for any menu):

[CEPE] Fj(0) > 0 and lim
a→1

Fj(a) < 1.

Regarding CLA, notice that with Euclidean preferences, the utility maximized at x is
the one with a peak at x, and hence tEj (aj(x)) = x. Therefore, CLA reads as follows
(for any menus and interior alternatives):

[CLAPE] x+ y = x′ + y′ ⇒ `j(aj(x)) + `j(aj(y)) = `j′(aj′(x
′)) + `j′(aj′(y

′)).

Note that our analysis can be applied to the study of other type distributions.22

When considering any other family of continuous and strictly increasing distributions,
CE would still apply, while the CLA requirement should be modified to capture the
structural implications of the corresponding statistical distribution. For instance, if we

21Indeed, we showed how data should be symmetric around the alternative occupying the median

quantile, a property implied by the analysis here.
22An alternative approach is to consider mixtures of the logistic distribution. This can be seen as

a parallel exercise to the mixed-logit analysis. In Appendix C, we show that any ORUM with a given

type-utility map γ can be approximated by a sequence of mixed ordered logits using the same γ.
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consider a Gaussian latent variable, the standardized type
tγj (a)−τ

σ
would now take the

form Φ−1
j (a), where Φ−1

j denotes the inverse of the CDF of the standard normal. Setting
aside the lack of a closed-form solution for this expression, one could operationalize a
version of the CLA property by simply replacing `j(a) with Φ−1

j (a).

Moreover, the structure of the CLA property also helps in deciding which family of
type distributions to work with. An analyst can start by fixing the type-utility map γ,
understanding the implications of this assumption as outlined in Theorem 3. Then, if
a parametric exercise is performed, an analysis of the changes in the sums of log-odds,
Φ−1, or the corresponding expression given by the distribution at stake, may guide the
selection of the most appropriate type distribution.

6. Application: Risk

An advantage of our results is that they are portable to the analysis of specific
economic settings of interest. As illustrated in Section 5.1 with the political economy
example, when a specific setting is adopted, all properties can be expressed in terms of
the appropriate fundamentals and take on a form that is familiar to the expert, allowing
for direct empirical examination. We now showcase the applicability of our framework
using two basic settings involving risk and altruism in standard linear budget sets.
In each case, we first particularize Theorems 1 to 4, providing nonparametric, semi-
nonparametric, and parametric characterizations. We then give detailed guidelines on
how to empirically apply our results. We start with the setting of risk; Section 7 covers
the study of altruism.

Let X = [0, 1]×R2
+ represent the set of all possible (two) state-contingent lotteries.23

A menu is a collection of lotteries in which all have the same state probabilities, and
their payouts belong to a linear budget set. Formally, wealth is equal to 1, and let
πij > 0 denote the price of allocating money to state i in menu Aj. Then, a menu is the

collection of all affordable lotteries of the form (q1
j ;x

1, x2), where q1
j ∈ [0, 1] describes

the menu-dependent probability of state 1 (hence, q2
j = 1−q1

j describes the probability

of state 2), and (x1, x2) ∈ R2
+ are the possible payout combinations. With the usual

budget set notation, the affordable lotteries are Bj = {(q1
j ;x

1, x2) ∈ X : π1
jx

1 + π2
jx

2 ≤
1}.24 We assume, without loss of generality, that state 1 pays more in expectation,

i.e., φ1
j ≡

π1
j

q1
j
<

π2
j

q2
j
≡ φ2

j , and denote φj =
φ2
j

φ1
j
. Given the assumptions on utility laid

down below, potential maximizers belong to the line segment Aj between the corner

23We discuss the case of two states because ORUMs in general, and ordered-logit models in partic-

ular, are uni-dimensional in nature; they create one-to-one maps from a latent variable to the space

of choices. We briefly address this point in Section 8. Moreover, as shown in Apesteguia, Ballester,

and Gutierrez-Daza (2024), the lessons learned in the uni-dimensional analysis can be transferred via

conditional analysis to the study of multi-dimensional settings.
24Given a menu, the proper decision variables involve x1 and x2, but we need to keep in the notation

the menu constant q1j to fully describe the lottery.
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allocation xj = (q1
j ;

1
π1
j
, 0) and the equal-payout allocation xj = (q1

j ;
1

π1
j+π2

j
, 1
π1
j+π2

j
). Note

that larger levels of risk aversion are intuitively reflected in larger investments in state
2. For this application, it is more convenient to represent each alternative x ∈ Aj by

its unique associated ratio rj(x) ∈ [0, 1], given by rj(x) = x2

x1 , rather than by the value
aj(x) used above.25

6.1. Theoretical Results. We begin with the nonparametric and semi-nonparametric
analysis. Given the risk setting, we first focus on the class U of expected utilities
associated with continuous, strictly increasing, and concave monetary utility functions.
To illustrate the semi-nonparametric case, we fix the type-utility map CRRA, where
type t corresponds to the expected utility with a relative risk aversion coefficient equal
to t.26

The nonparametric study of ORUM-rationalizability requires expected utility ra-
tionalizability at the quantile level. We can borrow from the deterministic analy-
sis of expected utility rationalizability by Kubler, Selden, and Wei (2014). Follow-
ing their paper, we say that the quantile choice function cp formed by the collec-
tion {cpj = (q1

j ; c
p,1
j , cp,2j )}Jj=1 satisfies the Strong Axiom of Revealed Expected Utility

(SAREU) whenever, for every sequence of menus Aj1 , . . . , AjK , it holds that L(j1, j2) ·
L(j2, j3) · . . . · L(jK−1, jK) · L(jK , j1) < 1, where27

L(j, j′) =


0 whenever cp,s

′

j′ > cp,sj for all s, s′ ∈ {1, 2},

max
s,s′:cp,sj >cp,s

′
j′

φsj
φs
′
j′

otherwise.

The simplest violation of SAREU involves a single menu Aj such that L(j, j) > 1.

This corresponds to cp,2j > cp,1j , i.e., a violation of first-order stochastic dominance
(since, as discussed above, larger investments in the state paying more in expecta-
tion should be unequivocally observed). SAREU eliminates these and more complex
weighted cycles, an issue that will be discussed in detail in the empirical part below.
We say that F satisfies Quantile SAREU whenever every cp satisfies SAREU.

Next, consider the semi-nonparametric model. From the standard first-order con-
dition analysis, it is well-known that the relative risk aversion coefficient of the type
maximizing at x in menu Aj is − log φj

log rj(x)
. Thus, for a choice function to be rational-

izable by a CRRA expected utility, this expression should be, for any given quantile,
constant across menus. Formally, we say that the quantile choice function cp satisfies

25Notice that the definition of quantiles is not affected by this ordinal transformation. This is

merely more convenient for the exposition of the parametric case.
26Recall that, as shown in Theorem 2, the semi-nonparametric model imposing assumptions on the

type distribution is equivalent to the nonparametric model, hence we omit its discussion here and in

Section 7.
27As in Kubler, Selden, and Wei (2014), we assume that cp,sj 6= cp,s

′

j′ for all j, j′ and s, s′.
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the Strong Axiom of Revealed CRRA Expected Utility (SARCEU) whenever, for every
pair of menus Aj and Aj′ , it holds that

log φj
log rj(c

p
j)

=
log φj′

log rj′(c
p
j′)
.28

We say that F satisfies Quantile SARCEU whenever every cp satisfies SARCEU.

Corollary 1. In the risk domain:

(1) F is ORUM-rationalizable if and only if F satisfies Quantile SAREU.
(2) F is ORUM-rationalizable with type-utility map CRRA if and only if F satisfies

Quantile SARCEU.

We now proceed to study the parametric case. We consider again the parametriza-
tion CRRA, and require the type distribution to belong to the class GL of logistic
distributions. We apply Theorem 4 to analyze the properties in this setting.

First, notice that the corner allocation xj = (q1
j ;

1
π1
j
, 0) corresponds to the menu-

independent interval of types (−∞, 0], and must have strictly positive mass. Mean-
while, the corner allocation xj = (q1

j ;
1

π1
j+π2

j
, 1
π1
j+π2

j
) is sub-optimal for all utilities in the

CRRA class and must have zero mass. Therefore, CE reads as follows, for every menu:

[CER] Fj(0) > 0 and lim
r→1

Fj(r) = 1.

Since the type maximizing at r ∈ (0, 1) is given by − log φ
log r

, the CLA condition for any

pair of menus and interior ratios is:

[CLAR] log φj

(
1

log r
+

1

log s

)
= log φj′

(
1

log r′
+

1

log s′

)
⇒ `j(r)+`j(s) = `j′(r

′)+`j′(s
′).

Corollary 2 follows directly from these conditions:

Corollary 2. In the risk domain, F is ORUM-rationalizable with type-utility map
CRRA and a type distribution in GL if and only if F satisfies CER and CLAR.

In relation to the comparison between the parametric and semi-nonparametric prop-

erties, note that the quantile version of SARCEU requires
log φj
log r

=
log φj′

log r′
⇔ `j(r) =

`j′(r
′). This follows readily from CLAR by considering the case in which r = s and

r′ = s′. CLAR strengthens SARCEU by requiring this principle to apply across pairs
of quantiles.

6.2. Empirical Analysis. We now give a detailed guideline, comprising ten steps, on
how to apply the results in the previous section to a dataset with linear budget sets. We
illustrate the exercise with a simulated dataset as follows. First, we generate J = 20
menus with prices and probabilities randomly selected from the uniform distribution
in the ranges [1/100, 1/10] and [1/5, 4/5], respectively. Second, finite choice data is

28When the choice is such that cp,2j = 0, the expression should be read as 0.
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obtained by simulating, for each menu, N independent choices from the parametric
ORUM with CRRA expected utilities and logistic distribution given by τ = .6 and
σ = .3.29 We study the effect of sampling size by considering N = {20, 80, 160, 480}.

The first two steps are on the organization of the dataset in accordance with our
framework.

Step 1. We start by organizing the menus such that state 1 is the one that pays

more in expectation; that is, such that φ1
j ≡

π1
j

q1
j
<

π2
j

q2
j
≡ φ2

j . Table 11 in Appendix D

reports the ordered menus in our dataset. �
Step 2. Since the analysis is based on the observed quantiles, we compute the em-

pirical distribution functions; for every menu Aj we order the N choices by increasing
consumption ratio rj. Figure 1 reports the empirical CDF of a sample of ten randomly
selected menus from our dataset of 20 menus. �

Figure 1. Empirical CDF of rj across menus

The next two steps deal with the nonparametric analysis. This requires studying
whether the quantile choice functions cp, with p ∈ { 1

N
, . . . , N

N
}, satisfy SAREU. To

facilitate the computational exercise, we start by establishing an immediate connec-
tion between SAREU and the well-known problem of existence of negative cycles in a
weighted directed graph.

Consider the complete directed graph where each node corresponds to one menu,
and the weight of the directed edge from j to j′ is

w(j, j′) =

{
− logL(j, j′) whenever L(j, j′) > 0,
∞ otherwise.

It is immediate that the logarithmic transformation and the change of sign guarantee
that a violation of SAREU is equivalent to the existence of a negative cycle in the

29These parameters give choice patterns (e.g., corner choices) that are in line with empirical ob-

servations in budget set experiments (see Choi, Kariv, Müller, and Silverman (2014)).
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graph, i.e., a directed cycle where the sum of weights is negative. Now, in the context
of a deterministic choice function cpj , notice that w(j, j′) is determined exclusively by

the ranking of consumption choices cp,1j , cp,2j , cp,1j′ and cp,2j′ , and that, given that φ1
j < φ2

j ,
there are only six such possible rankings, as described in Table 1.

Case w(j, j′) w(j′, j)

cp,1j > cp,2j > cp,1j′ > cp,2j′ log φ1
j′ − log φ2

j < 0 ∞
cp,1j > cp,1j′ > cp,2j > cp,2j′ max{log φ1

j′ − log φ1
j , log φ

2
j′ − log φ2

j} log φ2
j − log φ1

j′ > 0

cp,1j > cp,1j′ > cp,2j′ > cp,2j log φ1
j′ − log φ1

j log φ2
j − log φ2

j′

cp,1j′ > cp,1j > cp,2j > cp,2j′ log φ2
j′ − log φ2

j log φ1
j − log φ1

j′

cp,1j′ > cp,1j > cp,2j′ > cp,2j log φ2
j′ − log φp,1j > 0 max{log φ1

j − log φ1
j′ , log φ

2
j − log φ2

j′}
cp,1j′ > cp,2j′ > cp,1j > cp,2j ∞ log φ1

j − log φ2
j′ < 0

Table 1. Weights in the graph for menus Aj and Aj′

Hence, given J menus, the directed graph associated to the deterministic case, with
a single choice per menu, must be one of at most 6J

2

2
types.30

Step 3. For every quantile, we use Table 1 to construct the corresponding weighted
directed graph. Figure 2 illustrates this graph for the median quantile; it plots a
snapshot of the graph without the weights, with black edges denoting negative weights.
�
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Figure 2. Directed graph using Table 1 for the median quantile and all menus

Step 4. In order to search for negative cycles, one can apply well-known algorithms

such as the Bellman-Ford algorithm.31 Table 2 presents the rationalizable and non-
rationalizable quantiles based on the same set of 20 quantiles. As expected, one can
immediately appreciate that the finer the sampling, the lower is the number of quantiles
that are not rationalizable. �

The next two steps study the semi-nonparametric case. Quantile SARCEU imposes
that for every pair of menus the expression

log φj
log rj(c

p
j )

should be equal across all quantiles.

30This may be particularly useful from a computational point of view in cases where different sub-

populations or datasets are available. Notice that, it is feasible to determine which types of datasets

are consistent with SAREU without the need of actual data and then verify whether actual data

matches this structure.
31See, e.g., Bang-Jensen and Gutin (2008) for a textbook treatment.
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Dataset Number of violations Non-rationalizable quantiles

20 obs 17 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 95, 100

80 obs 11 10, 15, 20, 25, 30, 35, 40, 45, 50, 95, 100

160 obs 8 10, 15, 20, 25, 30, 35, 90, 95

480 obs 6 10, 15, 20, 25, 30, 35

Table 2. Non-rationalizable quantiles across datasets

Recall that this expression is the negative of the relative risk aversion coefficient induced
by the corresponding consumption.

Step 5. For every menu we compute the empirical distribution of the induced risk
coefficients. Figures 3 plots the CDFs for 10 randomly selected menus. �

Figure 3. Empirical CDF of induced risk aversion parameters

Step 6. We test for the equality of distributions using the Anderson-Darling and
the DTS tests. Figure 4a reports the distribution of p-values resulting from testing
the equality of distributions across all pairs of menus, comparing these on the basis of
the same 20 quantiles. In addition, we merge all observations and plot the empirical
distribution of induced risk aversion coefficients. Figure 4b reports it, for the case of
N = 160, together with the CDF of the underlying logistic. 32 �

The next four steps are devoted to the study the parametric model. We start with
a discussion on properties CER and CLAR.

Step 7. Property CER requires some mass at r = 0 and no mass at r = 1. Table 12
in Appendix D reports the observed mass at the corner of each one of the menus, which
can all be seen as being strictly positive. Table 13 in Appendix D reports the largest
value of r per menu. Most of these values are relatively large, with some exceptions
that, intuitively, correspond to those menus with very high relative price of the second
state. �

32Notice that a simple estimation of the logistic may be done by minimizing the distance to this

empirical distribution function.
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(a) (b)

Figure 4. Boxplot of distribution of p-values across each pair of menus (left); and aggre-

gated empirical CDF of induced risk aversion coefficients for N = 160 (right)

Step 8. We now concentrate on the main property of the parametric model, CLAR.

Consider all triples formed by one menu Aj and two interior observations in this menu.33

Take the induced risk aversion coefficients corresponding to these two observations, as
calculated in Step 5, and compute its sum. Take the empirical quantiles of these two
observations, as calculated in Step 2, transform them into log-odds and compute its
sum. CLAR requires the relationship between these two sums to be a linear function.
Figure 5 plots this relationship for all pairs form by combining 5 randomly selected
interior choices per menu.

Figure 5. CLA property in risk application

Note, in addition, that these plots can be used in a simple estimation of the param-
eters. Linearly regressing the data plotted in Figure 5, the intersect of the sum of log
odds with zero corresponds to twice the location, while the slope corresponds to the
inverse of the scale of the logistic. Table 3 reports on this. �

33Given the finiteness, we also need to exclude the largest observation in each menu.
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Parameter 20 obs 80 obs 160 obs 480 obs True

τ .503 .595 .611 .603 .6

σ .382 .305 .300 .301 .3

Table 3. CLA parameter estimation via linear regression

The final two steps study the testing of the parametric model. In order to do
so, we need to estimate the parameters of the model. We do so here by following
standard methods.34 Notice that we have a total of M = J × N observations, with
1 ≤ m ≤ M denoting a generic observation. We divide all the observations into two
classes; {1, . . . ,M0} are observations for which their associated consumption ratio is 0,
and {M0+1, . . . , N} are observations such that the ratio is strictly positive. Notice that
every corner observation must be the result of a type t ≤ 0, i.e. of a negative relative
risk aversion coefficient. Recall that for every interior observation m ∈ {M0+1, . . . ,M}
there is a unique induced type tm > 0 that rationalizes this choice. Given the logistic
parameters τ and σ, we denote the normalized values 0̄ = 0−τ

σ
and t̄m = tm−τ

σ
.

The log-likelihood can be written as:35

M0∑
1

logG(τ,σ)(0) +
M∑

M0+1

log g(τ,σ)(tm) =

−M0 log(1 + e−0̄)−
M∑

m=M0+1

(
t̄m + log σ + 2 log(1 + e−t̄m)

)
.

The first-order conditions with respect to τ and σ are:

1

M

[
M0

1 + e−0̄

1+e−0̄

2
+

M∑
m=M0+1

e−t̄m

1 + e−t̄m

]
=

1

2
,

1

M

[
M0(1− 0̄

e−0̄

1 + e−0̄
) +

M∑
m=M0+1

t̄m
1− e−t̄m
1 + e−t̄m

]
= 1.

We now are in a position to present our statistical test. We can do so using a version,
that accounts for type-I censoring (recall that all observations with t ≤ 0 are recorded
as 0), of the well-known Kolmogorov-Smirnov test for the logistic distribution using
the estimated parameters:36

KS =
√
M max

{∣∣∣M0

M
− 1

1 + e−
ˆ̄0

∣∣∣, max
M0<m∗≤M

∣∣∣m∗
M
− 1

1 + e−
ˆ̄tm∗

∣∣∣}+
0.19√
M
,

34Alternatively, we could use the simple method proposed in Step 8.
35g(τ,σ) denotes the density of G(τ,σ).
36See the standard procedures in Chapter 4 in D’Agostino and Stephens (1986). Alternatively, one

could also use the Cramer-von Mises test.
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where m∗ is the counter referring to the interior observations after having been re-

ordered to be increasing in their corresponding induced types, and ˆ̄0 and ˆ̄tm∗ are the
normalized values using the estimated parameters (τ̂ , σ̂).37

Step 9. The parametric estimation can be done by maximizing the above log-
likelihood function or, using the first order conditions, or the method outlined in Step
8. Table 4 reports the results, conditional on the number of observations. �

Parameter 20 obs 80 obs 160 obs 480 obs True

τ .567 .605 .606 .606 .6

σ .323 .315 .308 .305 .3

Table 4. Parameter estimation via Maximum Likelihood

Step 10. The application of the tests to our dataset is summarized in Table 5. �

N obs
Rounded share of

non-censored data
Test Statistic KS p-value KS Test Statistic CVM p-value CVM

20 obs .9 .596 > .5 .068 > .5

80 obs .9 .486 > .5 .041 > .5

160 obs .9 .484 > .5 .031 > .5

480 obs .9 .430 > .5 .036 > .5

Table 5. KS and CVM tests for logistic distribution with left random censoring

7. Application: Altruism

Let X = R2
+ represent the set of all possible monetary allocations in which the

first component refers to the payment to oneself and the second refers to the payment
to another person. Individuals confront linear budget sets of the form Bj = {x =
(x1, x2) ∈ X | π1

jx
1 + π2

jx
2 ≤ 1}, where πij > 0 denotes the cost of allocating money to

person i in budget setBj. Below we assume monotonicity in preferences, leading choices
to belong to the line segment, denoted Aj, between the corner allocations xj = ( 1

π1
j
, 0)

and xj = (0, 1
π2
j
). Note that larger levels of altruism are reflected in larger transfers to

individual 2. In this application, it is convenient to use the following parametrization
of the allocations in a menu Aj: vj(x) ∈ [0, 1] given by vj(x) = 1 − e−rj(x).38 Also,

denote πj =
π2
j

π1
j
.

37Note that the ordering in terms of the induced types is equivalent to that of the normalized types.
38Where we set vj(x) = 1 when x1 = 0.
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7.1. Theoretical results. We consider first the nonparametric analysis. In line with
standard models of social preferences, we start by considering the class U of utilities
that are continuous and either: (i) strictly monotone in the first component (and
either constant or decreasing in the second component), or (ii) strictly increasing in
both components and strictly convex. The characterization of this case will be based on
the classical Weak Axiom of Revealed Preference (WARP). In our setting, the quantile
choice function cp satisfies WARP whenever for every pair of menus Aj, Aj′ such that
cpj ∈ Bj′ and cpj′ ∈ Bj, it is cpj = cpj′ . As it is well-known, this is basically the asymmetry
part of the Acyclicity property of Section 3, together with monotonicity. We say that
F satisfies Quantile WARP whenever every cp satisfies WARP.

In the semi-nonparametric case, we consider CES-type utility functions (x1)α+t(x2)α,
where α ∈ (0, 1) is a constant, and allow for variation in the altruism coefficient
t ∈ R. The study of this case follows by applying Theorem 3 in combination with the
following deterministic analysis. From the standard first-order condition, the altruism
coefficient is equal to πjrj(x)1−α, where recall that rj(x) = x2

x1 . For a given quantile,
the altruism coefficient should be equal across pairs of menus. Hence, for any given

quantile p, this allows to obtain α from two menus as
log(πj/πj′ )

log(rj(c
p
j )/rj′ (c

p

j′ ))
+ 1. We then say

that the collection of choices cp satisfies the Weak Axiom of Revealed CES Preference
(WARCESP) whenever for every three menus Aj, Aj′ , Aj′′ , either cp,2j = 0 always holds
or

0 <
log(πj/πj′)

log(rj(c
p
j)/rj′(c

p
j′))

+ 1 =
log(πj/πj′′)

log(rj(c
p
j)/rj′′(c

p
j′′))

+ 1 < 1.

We say that F satisfies Quantile WARCESP whenever every cp satisfies WARCESP
for the same constant.

Corollary 3. In the altruism domain,

(1) F is ORUM-rationalizable if and only if F satisfies Quantile WARP.
(2) F is ORUM-rationalizable with type-utility map CES if and only if F satisfies

Quantile WARCESP.

Corollary 3 is similar in spirit to Corollary 1. The nonparametric case is obtained
with a relatively classical and broad set of preferences, while the semi-nonparametric
case is derived by using the CES family of utility functions. Importantly, we want
to focus our attention on the altruism parameter t, and not on the curvature α, so
the second part of Corollary 3 requires not only the assumption that every quantile
is CES-rationalizable but also that all quantiles are CES-rationalized with the same
curvature.

We now proceed to study the parametric case by using the CES map for a given value
of α, and imposing the logistic distribution over the type space t (or equivalently, over
the altruism parameter). The study of rationalizability is again a direct consequence
of the application of Theorem 4. To understand how property CE reads in this setting,
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notice again that for any line segment Aj, the corner allocation xj = ( 1
π1
j
, 0) is associated

with a constant interval of CES utilities (t ≤ 0) while the corner allocation xj = (0, 1
π2
j
)

is never selected. Then, for any menu:

[CEA] Fj(0) > 0 and lim
v→1

Fj(v) = 1.

To see how property CLA reads, notice that the type that maximizes at the interior
alternative x is the one with altruism coefficient equal to πjrj(x)1−α. Then, for any
pair of menus and interior alternatives:

[CLAA] πj

([
log

1

1− v

]1−α
+
[

log
1

1− w

]1−α
)

= πj′

([
log

1

1− v′
]1−α

+
[

log
1

1− w′
]1−α

)
⇒

`j(v) + `j(w) = `j′(v
′) + `j′(w

′).

We omit the proof of the following immediate result.

Corollary 4. In the altruism domain, F is ORUM-rationalizable with type-utility map
CES and a type distribution in GL if and only if F satisfies CEA and CLAA.

7.2. Empirical Analysis. We now give a detailed guideline on how to apply the
results in the previous section to a simulated dataset. This guideline follows closely the
one given for the risk case. We randomly generate J = 20 menus with prices randomly
selected from the uniform distribution in the range [1/100, 1/10]. We simulate N =
{20, 80, 160, 480} choices in each menu, using a parametric ORUM with CES utilities.
In accordance with the risk analysis, we set a curvature of the CES functions of α = .4.
The parameters of the logistic distribution governing altruism are τ = .2 and σ = .2.39

Step 1. We start by ordering the collection of menus in decreasing order of πj. Table
14 in Appendix D reports the simulated menus. �

Step 2. We compute the empirical distribution functions. That is, for each menu, we
order the responses in increasing order in terms of the consumption in state 2. Figure
6 reports the empirical CDF of a sample of ten randomly selected menus. �

We now illustrate the nonparametric case. Note that, as already discussed in the po-
litical economy example, this application is more amenable than the risk one, since the
structure of WARP is simpler than that of SARCEU. In a consumer setting, Kitamura
and Stoye (2018) show that one can discretize choices to work with finite partitions,
called patches, and Hoderlein and Stoye (2015) exploit this technique for the case of
two goods. This approach, within our setting, reads as follows. Suppose that a quan-
tile cp fails to satisfy WARP. Then, there must exist two menus Aj, Aj′ , with πj > πj′ ,
where this violation occurs. Denoting by xj,j′ the allocation where these two budget
lines intersect, the violation guarantees that Fj(vj(xj,j′)) < p ≤ Fj′(vj′(xj,j′)). Then,

39These parameters give choice patterns (e.g., corner choices) that are in line with empirical ob-

servations in budget set experiments (see Andreoni and Miller (2002)).
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Figure 6. Empirical CDF of vj = 1− e−rj across menus

the analysis of Quantile WARP simply requires to check Fj(vj(xj,j′)) ≥ Fj′(vj′(xj,j′))
for every pair of menus.

Step 3. Table 6 reports the number of violations of WARP. �

N obs Number of violations
Menus with positive

share of violations

20 obs 3 4, 13, 18

80 obs 2 5, 8

160 obs 0 -

480 obs 0 -

Table 6. Non-rationalizable menus in altruism application

For the semi-nonparametric case, we focus on the study of WARCESP for the al-
truism parameter. In order to do so, we first recover a value of α from the data as
follows.

Step 4. We compute, for every pair of menus and interior quantiles, the value
log(πj/πj′ )

log(rj(c
p
j )/rj′ (c

p

j′ ))
+ 1, which corresponds to the value of α in the model. Then, we set α

to be the median of these values. Figure 7a shows the distribution of α obtained when
sampling and combining the interior quantiles {40, 60, 80, 100} for all menus. Table 7
reports the median values. �

20 obs 80 obs 160 obs 480 obs True

α .456 .415 .393 .397 .4

Table 7. Median α as described in Step 4

Having set the value of α, we can obtain the induced map between allocations and
types, which, as discussed above, is given by t = πjrj(x)1−α = πj(log 1

1−vj(x)
)1−α.
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Step 5. We compute the empirical distributions of the induced altruism coefficients
for the 20 menus, and Figure 7b plots 10 of them, randomly selected. �

(a) Step 4 (b) Step 5

Figure 7. Distribution of α across datasets (left); and Empirical CDF of induced altruism

coefficients across menus (right)

Step 6. As required by Quantile WARCESP, we test for the equality of distributions.
Figure 8a reports the distribution of p-values resulting from testing the equality of
distributions across all pairs of menus in each dataset, comparing these on the basis
of the same 20 quantiles, according to Anderson-Darling and DTS tests. In addition,
we merge all observations and plot the empirical distribution of the induced altruism
coefficients. Figure 8b reports it, for the case of N = 160, together with the CDF of
the underlying logistic. �

(a) (b)

Figure 8. Boxplot of distribution of p-values across each pair of menus (left); and aggre-

gated empirical CDF of induced altruism coefficients for N = 160 (right)

We now turn to the analysis of the parametric model.

Step 7. Note that CEA requires some mass at v = 0 and no mass at v = 1. Table
15 in Appendix D reports the observed mass at the corner, and Table 16 in Appendix
D the largest value of v per menu. �
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Step 8. We now focus on property CLAA by using the value of α obtained in Step
4. We consider all triples formed by one menu Aj and two interior observations in this
menu. Take the induced altruism coefficients corresponding to these two observations,
as calculated in Step 5, and compute its sum. Take the empirical quantiles of these two
observations, as calculated in Step 2, transform them into log-odds and compute its
sum. CLAA requires the relationship between these two sums to be a linear function.
Figure 9 plots this relationship for all pairs formed by combining 5 randomly selected
interior choices per menu, and Table 8 reports the results of the estimation of the
parameters via linear regression. �

Figure 9. CLA property in altruism application

Parameter 20 obs 80 obs 160 obs 480 obs True

τ .215 .227 .198 .198 .2

σ .259 .199 .202 .192 .2

Table 8. CLA parameter estimation via linear regression

The statistical analysis requires the same steps than in the risk domain.

Step 9. Table 9 reports the results of the maximum likelihood estimation, conditional
on the number of observations. �

Parameter 20 obs 80 obs 160 obs 480 obs True

τ .272 .228 .205 .199 .2

σ .211 .228 .198 .197 .2

Table 9. Parameter estimation via Maximum Likelihood

Step 10. Table 10 reports the results of the Kolmogorov-Smirnov and CVM tests. �
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N obs
Rounded share of

non-censored data
Test Statistic KS p-value KS Test Statistic CVM p-value CVM

20 obs .8 .595 > .5 .049 > .5

80 obs .8 .461 > .5 .042 > .5

160 obs .7 .472 > .5 .025 > .5

480 obs .7 .382 > .5 .013 > .5

Table 10. KS and CVM tests for logistic distribution with left random censoring

8. Final Remarks

This paper investigates the empirical implications of commonly imposed parametric
assumptions in ORUMs, specifically focusing on the case where menus are represented
as linear segments, a structure that aligns well with several important economic ap-
plications. Importantly, notice that when a type-utility map is fixed, as in the semi-
nonparametric and parametric cases, maximizers form a one-dimensional curve ordered
by the type-utility map. As a result, the analysis can be based on these induced or-
dered curves, and hence, our results apply far beyond the setting and applications
considered.40 In Appendix B, we also extend our results to the case of finite problems,
demonstrating the flexibility of the setting.

Appendix A. Proofs

Proof of Theorem 1: We start by proving the necessity part. Suppose that data F
is ORUM-rationalizable with type-utility map γ and type distribution G, and consider
any probability value p ∈ (0, 1). Given that G is continuous and strictly increasing,
there is a unique type G−1(p) for which the cumulative mass is equal to p, i.e.,

G−1(p) = {t : G(t) = p} = min
t:G(t)≥p

t.

We claim that, for every menu Aj, the utility associated to type G−1(p), γ(G−1(p)), has
maximizer cpj . Suppose, by way of contradiction that this is not the case, i.e., suppose

that there exists a menu Aj for which the maximizer of γ(G−1(p)) is an alternative
x such that aj(x) 6= aj(c

p
j). If aj(x) < aj(c

p
j), the ordered structure of choices gener-

ated by utilities guarantees that for every type t ≤ G−1(p), aj(γ(t)) ≤ aj(x). Since
(γ,G) rationalizes data, it must be Fj(aj(x)) ≥ G(G−1(p)) = p, and x contradicts the
definition of cpj . If aj(x) > aj(c

p
j), it must be cpj 6= xj and given the assumptions, we

know that there is a type t∗ such that aj(γ(t)) > a(cpj) if and only if t > t∗. It is

t∗ < G−1(p) and, given the assumptions on G and the rationalization of data, the mass
below cpj would be strictly lower than p, a contradiction. We have then proved that

40In particular, no restriction on the linearity of menus or on the number of goods is of relevance

in the semi-nonparametric and parametric cases. For the nonparametric results, it would be critical

to examine the conditions under which such one-dimensional curves can be derived.
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the maximizers of type G−1(p) are described by the choice function cp. Given classical
results, this choice function must be acyclical, and necessity follows.

We now prove the sufficiency part. Suppose that for a given probability value p ∈
(0, 1) the choice function cp is acyclical. Given classical results, we can construct a
utility function Up ∈ U that is strictly positive over the finite set of alternatives {cpj}Jj=1

and such that Up(x) = 0 for the rest of alternatives in X, that rationalizes these p-
quantile choices. That is, for every menu Aj, U

p gives cpj as a unique maximizer. Assign,

to every type t ∈ R, the utility function γ(t) given by U
1

1+e−t . We first claim that,
for every menu, the maximizers induced by γ are increasing in t. To see this, consider

any menu Aj and, given the construction, we merely need to prove that choices c
1

1+e−t
j

are increasing in t, which follows immediately from the quantile definition of such
alternatives and the obvious fact that Fj is non-decreasing. The strictly increasing
nature in the interior and the continuity of choices follow similarly. Now, consider
G to be the logistic distribution with location 0 and variance 1. We claim that, for
every menu Aj and every a ∈ (0, 1), Fj(a) coincides with the mass of types maximizing
below a. Given the non-decreasing nature of the maximizing alternatives, we need to
prove that the utility function UFj(a) is the last utility with maximizer below a. First,
consider p > Fj(a). Since a has not reached cumulative probability p, it must be that
a(cpj) > a, and since utility Up rationalizes cpj , the maximizer of Up lies strictly above

a. Second, consider the utility function UFj(a). By construction, c
Fj(a)
j lies below a and

since UFj(a) rationalizes c
Fj(a)
j , the maximizer of UFj(a) lies below a. This concludes the

sufficiency part and the proof. �

Proof of Theorem 2: Necessity follows directly from Theorem 1. For sufficiency,
let G ∈ G and define Up as in the proof of Theorem 1. Then, for every type t ∈ R,
define γ(t) as the utility UG(t). That is, type t is assigned the utility that corresponds
exactly to the quantile, according to G, of this type. The ordered-choice structure of
type-utility map γ is immediate and ORUM-rationalizability follows from reproducing
the proof of Theorem 1 with the pair (γ,G). �

Proof of Theorem 3: Necessity follows directly from Theorem 1. For sufficiency,
let γ ∈ Γ. Following Theorem 1, we can select Up ∈ γ(R). When constructing the
bijection from the uniform distribution on (0, 1) to the reals, we need to respect map
γ. This is always possible since no assumption is made on the type-distribution. �

Proof of Theorem 4: Since the necessity of the axioms is straightforward, we will
now prove sufficiency. Consider any menu Aj. We construct a sequence of open inter-
vals of types, {I0

j , I
1
j , . . . , I

n
j , . . . }, and a sequence of real functions defined over them,

{G0
j , G

1
j , . . . , G

n
j , . . . }, satisfying the following four properties:

(1) For every n, Inj ⊆ In+1
j .

(2) For every n, Gn+1
j extends Gn

j .
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(3) For every n, Gn
j takes values in (0, 1), is continuous, and strictly increasing.

Moreover, if Inj is bounded from above (respectively, from below), the function
Gn
j must be strictly bounded from above by some value k < 1 (respectively,

strictly bounded from below by some value k > 0).
(4) For every n and every four types t1, t2, t

′
1, t
′
2 in Inj , if t1 + t2 = t′1 + t′2 then

log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t′1)

1−Gnj (t′1)
+ log

Gnj (t′2)

1−Gnj (t′2)
.

The first interval of types, I0
j , corresponds to the set of types that have a maximizer in

Aj \ {xj, xj}.41 The first function, G0
j , corresponds to the function that choice data Fj

induces over these types, i.e., for every t ∈ I0
j , G0

j(t) = Fj(aj(γ(t))). The function G0
j is

well-defined given the assumptions made on Fj. It is obviously strictly increasing and
takes values in (0, 1). Moreover, if the interval I0

j is bounded from above (respectively,
from below), there is an interval of types selecting xj (respectively, xj) and property CE
implies lima→1 Fj(a) < 1 (respectively, lima→0 Fj(a) > 0), and hence the boundedness
conditions hold for G0

j . That is, property (3) is satisfied. Property (4) for G0
j follows

from CLA by considering Aj′ = Aj.

The remaining intervals and functions are now defined recursively. Given collections
{I0

j , I
1
j , . . . , I

n
j } and {G0

j , G
1
j , . . . , G

n
j } which satisfy all the properties, we define interval

In+1
j and function Gn+1

j in such a way as to guarantee that collections {I0
j , I

1
j , . . . , I

n+1
j }

and {G0
j , G

1
j , . . . , G

n+1
j } also satisfy the properties. The definition of the new interval

of types, In+1
j , depends on the parity of n. If n is an even (respectively, an odd) integer,

we define interval In+1
j as follows: (i) if Inj is not bounded from above (respectively,

from below), define In+1
j = Inj and (ii) if Inj is bounded from above (respectively, from

below), define In+1
j as the union of the previous interval Inj , the least upper bound

(respectively, the greatest lower bound) znj of interval Inj , and the types t for which

there exists t′ ∈ Inj with t = 2znj − t′.42

We now consider the definition of function Gn+1
j . For every t ∈ Inj , define Gn+1

j (t) =

Gn
j (t). For the limit type znj , define Gn+1

j (znj ) = lims→znj G
n
j (s), where the right-hand

or left-hand bound must be considered, depending on the parity. Finally, for any other
type t belonging to In+1

j , we know that there exists a unique value t′ ∈ Inj such that

41Notice that this set of types depends on the assumed type-utility map γ. Since γ is fixed and to

simplify the exposition, we will avoid some references to γ in the arguments that follow.
42Intuitively we are extending the original right-bounded (respectively, left-bounded) interval Inj

beyond its boundary and adding the boundary point. This step is not needed when there are no

corner choices because then the initial interval I0j equals the set of all types, R. When choices are

observed in only one of the corner alternatives, or, equivalently, I0j is bounded on one side, the logic

requires a unique duplication, which already forms the entire real line. If choices are observed in both

corner alternatives, or, equivalently, the initial interval is bounded on both sides, we need to duplicate

the initial bounded interval an infinite number of times, as the proof indicates.
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t = 2znj − t′, so we can define Gn+1
j (t) as the unique real value satisfying the equation:

log
Gn+1
j (t)

1−Gn+1
j (t)

= 2 log
Gn+1
j (znj )

1−Gn+1
j (znj )

− log
Gn
j (t′)

1−Gn
j (t′)

.

It is then evident that the function Gn+1
j is well defined on In+1

j and it is straight-

forward to see that Inj ⊆ In+1
j and, hence, property (1) holds. Similarly, note that the

construction guarantees that the function Gn+1
j extends Gn

j , and therefore property (2)
is satisfied.

We now discuss property (3). Notice that, by the continuity of Gn
j and the fact that

all values belong to (0, 1), it is guaranteed that the limit value at znj is well defined

when needed. The continuity of the function Gn+1
j is then a direct consequence of this

limit definition at znj . To appreciate the strictly increasing nature of the new function,

consider two types t1 < t2. If both types belong to Inj , we know that Gn+1
j (t1) <

Gn+1
j (t2) must hold because Gn+1

j extends the strictly increasing function Gn
j . If t1 ∈ Inj

but t2 does not, it must be the case that n is even and there exists t′2 ∈ Inj such that

t2 = 2znj − t′2. Since log
Gnj (znj )

1−Gnj (znj )
> log

Gnj (t′2)

1−Gnj (t′2)
, it is log

Gn+1
j (t1)

1−Gn+1
j (t1)

= log
Gnj (t1)

1−Gnj (t1)
<

log
Gnj (znj )

1−Gnj (znj )
< 2 log

Gnj (znj )

1−Gnj (znj )
− log

Gnj (t′2)

1−Gnj (t′”)
= log

Gn+1
j (t2)

1−Gn+1
j (t2)

, as desired. If t1 is not in Inj

but t2 is, an analogous argument applies in which n is odd and znj is the lower bound of
Inj . If neither is in Inj , they must both be above or below znj , depending on the parity.
There must exist t′1, t

′
2 ∈ Inj such that t1 = 2znj − t′1 and t2 = 2znj − t′2. It clearly must

be that t′1 > t′2 and we know that Gn
j (t′1) > Gn

j (t′2). The definition of Gn+1
j (t1) and

Gn+1
j (t2) guarantees that the former is strictly smaller than the latter. Hence, we have

shown that Gn+1 is strictly increasing and, to complete property (3), we need to show
that this function takes values in (0, 1) and is bounded as required. We show the case
of n being even, the other case being analogous. If Inj is not bounded from above, the
new function replicates the original one and the property holds. If Inj is bounded from

above, we know that the value Gn+1(znj ) must be strictly lower than 1 by virtue of the

boundedness condition. For every t ∈ In+1
j with t > znj , the construction guarantees

that Gn+1
j takes values in (0, 1). To show boundedness, notice that nothing changes

at the lower end of the interval and, since Gn+1
j extends Gn

j , the property is satisfied.

For the upper end of the interval, suppose that In+1
j is bounded from above, in which

case it must be that Inj is bounded from below (say, with largest lower bound k). It

then follows that log
Gn+1
j (t)

1−Gn+1
j (t)

< 2 log
Gn+1
j (znj )

1−Gn+1
j (znj )

− log
Gnj (k)

1−Gnj (k)
, and hence Gn+1

j (t) must

be strictly lower than 1. This completes the proof that Gn+1
j satisfies property (3).

To see that property (4) holds, consider any four types t1, t2, t
′
1, t
′
2 in In+1

j such that

t1 + t2 = t′1 + t′2 and assume, without loss of generality, that t1 < t′1 ≤ t′2 < t2.43 Again,
we show the case of n even, the other case being analogous. We start by noticing

43Notice that if the types were equal across the two pairs, the property would be trivially satisfied.
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that property (4) holds over the closure of Inj , denoted by I
n

j , thanks to the recursive

assumption on Gn
j , the fact that Gn+1

j extends Gn
j , and the limit construction at znj .

Hence, we only need to consider cases where not all four types belong to I
n

j :

• Case 1: None of the four types belongs to I
n

j . There must exist s1, s2, s
′
1, s
′
2 ∈ Inj

such that t1 = 2znj − s1, t′1 = 2znj − s′1, t2 = 2znj − s2 and t′2 = 2znj − s′2. Clearly,

it must be that s1 + s2 = s′1 + s′2 and hence, we know that log
Gnj (s1)

1−Gnj (s1)
+

log
Gnj (s2)

1−Gnj (s2)
= log

Gnj (s′1)

1−Gnj (s′1)
+ log

Gnj (s′2)

1−Gnj (s′2)
, which is equivalent to log

Gnj (s1)

1−Gnj (s1)
+

log
Gnj (s2)

1−Gnj (s2)
+4Gn+1

j (znj ) = log
Gnj (s′1)

1−Gnj (s′1)
+log

Gnj (s′2)

1−Gnj (s′2)
+4Gn+1

j (znj ), which implies

log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t′1)

1−Gnj (t′1)
+ log

Gnj (t′2)

1−Gnj (t′2)
, as desired.

• Case 2: t1 ∈ I
n

j . There must exist s2, s
′
1, s
′
2 ∈ Inj such that t′1 = 2znj − s′1,

t2 = 2znj − s2 and t′2 = 2znj − s′2. It must be that t1 + s′1 + s′2 = s2 + 2znj .

Define t̂ = s2 + znj − t1, which belongs to Inj . Given that t1 + t̂ = s2 + znj ,
property (4) holds over these four types. Now, notice that it must also be that
s′1 + s′2 = t̂ + znj and hence property (4) holds over these four types. We can
combine the two expressions to verify that property (4) holds over t1, t2, t

′
1 and

t′2, as desired.
• Case 3: t1, t

′
1 ∈ I

n

j . There must exist s2, s
′
2 ∈ Inj such that t2 = 2znj − s2,

and t′2 = 2znj − s′2. It must be that t1 + s′2 = t′1 + s2 and hence, we know that

log
Gnj (t1)

1−Gnj (t1)
+log

Gnj (s′2)

1−Gnj (s′2)
= log

Gnj (t′1)

1−Gnj (t′1)
+log

Gnj (s2)

1−Gnj (s2)
, which implies log

Gnj (t1)

1−Gnj (t1)
+

log
Gnj (s′2)

1−Gnj (s′2)
+2Gn+1

j (znj ) = log
Gnj (t′1)

1−Gnj (t′1)
+log

Gnj (s2)

1−Gnj (s2)
+2Gn+1

j (znj ), which implies

log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t′1)

1−Gnj (t′1)
+ log

Gnj (t′2)

1−Gnj (t′2)
, as desired.

• Case 4: t1, t
′
1, t
′
2 ∈ I

n

j . There must exist s2 ∈ Inj such that t2 = 2znj − s2. It

must be that t1 + 2znj = t′1 + t′2 + s2. Define t̂ = t1 + znj − t′1, which belongs

to Inj . Given that t′1 + t̂ = t1 + znj , property (4) holds over these four types.

Now, notice that it must also be that t̂ + znj = t′2 + s2 and hence property (4)
holds over these four types. We can combine the two expressions to verify that
property (4) holds over t1, t2, t

′
1 and t′2, as desired.

This completes the proof that the collections {I0
j , I

1
j , . . . , I

n+1
j } and {G0

j , G
1
j , . . . , G

n+1
j }

satisfy all the properties. The limit interval of the sequence {I0
j , I

1
j , . . . , I

n
j , . . . } is the

entire set of reals. The limit function of the sequence {G0
j , G

1
j , . . . , G

n
j , . . . }, which we

denote by Gj, must be a continuous, strictly increasing CDF over the reals. Moreover,
it extends G0

j and must also satisfy property (4) above.

Consider the median type of distribution Gj, i.e., the type τj such that Gj(τj) = .5.
Define the function Hj over the reals as follows:

Hj(w) = Gj(τj + w).
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We claim that Hj is a continuous, strictly increasing CDF over the reals, and is sym-
metric with respect to the origin. We need to show symmetry. For this, consider
t1 = τj − w, t2 = τj + w and t′1 = t′2 = τj. Then, since t1 + t2 = t′1 + t′2, we

know that log
Gj(t1)

1−Gj(t1)
+ log

Gj(t2)

1−Gj(t2)
= log

Gj(t
′
1)

1−Gj(t′1)
+ log

Gj(t
′
2)

1−Gj(t′2)
= 0 + 0 = 0. Hence, it

must be that log
Gj(t1)

1−Gj(t1)
= log

1−Gj(t2)

Gj(t2)
and Gj(t1) = 1 − Gj(t2) follows. As a result,

Hj(−w) = Gj(t1) = 1−Gj(t2) = 1−Hj(w), and the symmetry of Hj has been proved.

Consider now the following function defined over the positive reals:

Oj(w) =
1−Hj(w)

Hj(w)
.

Since Hj is a continuous, strictly increasing CDF over the reals with Hj(0) = .5,
1 − Oj(w) must be a continuous, strictly increasing CDF over the positive reals with
no strictly positive mass at zero. Moreover, given that Gj satisfies property (4) above,
the definition of Hj and Oj guarantees that Oj(w)Oj(z) = Oj(w + z) must hold for
every pair of positive real values w and z. One can then reproduce the standard
argument dating back to Cauchy (1821), which is described in Galambos and Kotz
(1978; Theorem 1.3.1), to guarantee that Oj must be an exponential distribution, with
no strictly positive mass at the origin.44 That is, there exists σj ∈ R++ such that

1−Oj(w) = 1− 1−Hj(w)

Hj(w)
= 1− e−w/σj ,

and hence, for every w ≥ 0, it is true that Hj(w) = 1

1+e−w/σj
. Moreover, given the

symmetry of Hj with respect to the origin, for every w < 0, it must also be true that
Hj(w) = 1 − Hj(−w) = 1 − 1

1+ew/σj
= 1

1+e−w/σj
. That is, Hj is a logistic distribution

with location parameter equal to zero and scale parameter σj, and Gj is ordered logistic
with location parameter τj and scale parameter σj. Since Gj extends G0

j , all choices in
menu Aj are explained by this distribution.

Consider now two menus Aj and Aj′ . By our richness assumption, there exists a
sequence of menus Aj0 = Aj, Aj1 , . . . , Ajk , . . . , AjK = Aj′ such that, for every k ∈
{0, . . . , K − 1}, I0

jk
∩ I0

jk+1 6= ∅. Consider t ∈ I0
jk
∩ I0

jk+1 and take t1 = t2 = t′1 = t′2 = t.
Using the ordered-logit structure of Gjk and Gjk+1 , it follows that they must both
have a common location parameter τ and a common scale parameter σ. The recursive
application of this argument shows that Gj and Gj′ must have the same common
parameters τ and σ, which concludes the proof. �

Proof of Corollary 1: The first part follows immediately from Theorem 1 in Kubler,
Selden and Wei (2014) and from our Theorem 1. The second part follows from our
Theorem 3 after noticing that log φ

log r
represents the negative of the curvature of the

44The property is satisfied by exponential distributions with and without strictly positive mass at

zero. Since we know that O has no strictly positive mass at zero, it must be one of the latter.
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CRRA function maximizing at the consumption ratio r, with strictly negative values
representing risk-aversion and null values corresponding to any other risk attitude. �

Proof of Corollary 3: The first part follows immediately from classical deterministic
results on consumption theory. Notice that utilities that are strictly monotone in the
first component always select the corner x2 = 0, and generate choices that are consistent
with WARP. Also, utilities that are strictly increasing in both components and strictly
convex must also lead to choices consistent with WARP. Moreover, satisfaction of
WARP allows to rationalize choices with such utility functions (see, e.g. Rose (1958)
and Matzkin and Richter (1991)). Then, the application of our Theorem 1 concludes
the proof. For the second part, notice that when t ≤ 0, all choices are such that x2 = 0.
When t > 0, the first-order condition analysis for a given budget set allows to obtain
t = πjrj(x)1−α. By equalizing this value for two different budget sets Aj, Aj′ , one can

then see that α =
log(πj/πj′ )

log(rj(x)/rj′ (x
′))

+1, which must then be constant across pairs of menus.

If deterministic data has this constancy with interior solutions, one can define α to be
such constant, and then define t from one menu, using α. For corner solutions, one can
set t ≤ 0 and choose freely α. The utility function defined in such ways rationalizes
the observations. To apply our Theorem 1, notice that we want the utility function to
use a constant α across quantiles, which is guaranteed by our assumption. �

Appendix B. Discrete choice

We present here some simple discrete versions of our results, serving several pur-
poses. First, they illustrate that our analysis is not confined to continuous settings.
Second, they may be useful for practitioners working with discrete choice environments.
Third, they help provide a more comprehensive understanding of the theoretical results
developed in this paper in relation to existing literature.

Let (X,<) be a finite, partially ordered set of alternatives. Denote by X the set
of all subsets of X containing at least two alternatives, and by D ⊆ X an arbitrary
domain consisting of fully ordered menus, i.e., the restriction of < to any A ∈ D is
complete. An ordered menu Aj can be written as Aj = {1j, 2j, . . . , ij, . . . , Ij+1}, where
1j < 2j < · · · < ij < · · · < Ij + 1.

Choice data is described by a stochastic choice function ρ defined on D. Specifically,
ρ(x,A) ∈ [0, 1], with x ∈ A and A ∈ D, represents the probability of choosing alter-
native x from menu A, with the constraint

∑
x∈A ρ(x,A) = 1. We denote cumulative

choice data by ρ̄, defined as ρ̄(ij, Aj) =
∑

k≤ij ρ(k,Aj).

The definition of ORUM-rationalizability in this discrete setting follows directly from
the one in the main text, with F replaced by ρ̄. Given the finite nature of this setting,
the image of γ can be interpreted as a finite ordered collection of linear orders, with G
being the CDF of a finite probability distribution g.
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B.1. Nonparametric case. To present a version of Theorem 1 in this discrete setting,
we define the p-quantile choice function cp. Formally, cp(A) is the first alternative in A
that reaches cumulative probability mass p, i.e., ρ̄(cp(A)−1, A) < p ≤ ρ̄(cp(A), A).45 A
quantile choice function cp is said to be rationalizable if there exists a linear order P on
X such that, for every A ∈ D, cp(A) = m(A,P ), i.e., cp(A) is the maximal element in
A according to P . It is well known that, in arbitrary and finite domains, deterministic
rationalizability is equivalent to the acyclicity notion used in the main text.

Proposition 1. ρ is ORUM-rationalizable if and only if ρ satisfies Quantile Acyclicity.

Proof of Proposition 1: Suppose first that ρ is ORUM-rationalizable by means of
(γ, g). Given the finiteness of the setting, (γ, g) induces a finite, ordered collection of
linear orders {Pt}Tt=1, with increasing maximizers in every menu, and a finite probability
distribution over {1, . . . , T}, denoted by g for simplicity. Consider any p ∈ (0, 1), and
let t(p) be such that

∑
t<t(p) g(t) < p ≤

∑
t≤t(p) g(t). Given the increasing nature of the

maximizers of {Pt}Tt=1, it follows that, for every A ∈ D, the quantile choices {cp(A)}A∈D
coincide with the maximizers of Pt(p). Hence, these choices must be rationalizable and,
by classical results, must satisfy Acyclicity.

Conversely, suppose that cp satisfies Acyclicity for every p ∈ (0, 1). These choices can
be rationalized by a linear preference, denoted Pp. Since the setting is finite, there are
only finitely many distinct linear preferences in the family {Pp}p∈(0,1), denoted {Pt}Tt=1.
By discarding preferences that generate identical maximizers in the domain D, we
can assume, without loss of generality, that distinct preferences in this collection yield
different choice functions. Furthermore, given the quantile definition, each of these
preferences must correspond to an interval of p-values. Thus, we can assume that the
family {Pt}Tt=1 is ordered, i.e., Pt corresponds to lower p-values than Pt′ whenever t < t′.
We can then assign to each preference Pt the Lebesgue measure of the corresponding
interval of p-values, denoted g(t). This pair ({Pt}Tt=1, g) rationalizes the data, so ρ is
ORUM-rationalizable. �

Proposition 1, a discrete version of Theorem 1 in the main text, clarifies the difference
with the SCRUM model of Apesteguia, Ballester, and Lu (2017). Essentially, ORUM-
rationalization is a more general model that allows for X to be partially ordered and
the consideration of an arbitrary domain of menus.

Proposition 2 below shows that when X is fully ordered and choices are observed
from every subset of X, ORUM-rationalization reduces to SCRUM-rationalization. To
do so, we use the discrete version of the Weak Axiom of Revealed Preference (D-WARP)
at the quantile level, where the direct revelations of the quantile choice function cp must
contain no cycles, and property α, where cp(A) ∈ B ⊆ A implies cp(B) = cp(A). We say
that ρ satisfies Quantile D-WARP (respectively, Quantile α) if every cp satisfies WARP

45When cp(A) = 1j , we set ρ̄(cp(A)−1, A) = 0. Similarly, ij−1 is denoted as (i−1)j . In the proof

below, when t(p) = 1, we write
∑
t<t(p) g(t) = 0.
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(respectively, property α). Consider also the two properties characterizing SCRUMs
in Apesteguia, Ballester, and Lu (2017): Regularity and Centrality.46

Proposition 2. Let D = X . ρ is ORUM-rationalizable (or SCRUM-rationalizable) if
and only if ρ satisfies Quantile D-WARP, if and only if ρ satisfies Quantile α, if and
only if ρ satisfies Regularity and Centrality.

Proof of Proposition 2: Under D = X , classical results ensure that cp satisfies
Acyclicity if and only if it satisfies D-WARP, if and only if it satisfies property α, al-
lowing us to apply Proposition 1. To prove the final statement, note that since D = X ,
all binary sets are part of the domain, and hence X must be completely ordered. It
follows that ORUM-rationalization is equivalent to SCRUM-rationalization (a proba-
bility distribution over a single-crossing collection of preferences). The characterization
result in Apesteguia, Ballester, and Lu (2017) completes the proof. �

Thanks to Proposition 2, one can also see better how the properties of nonparametric
ORUMs relate to the existing properties of SCRUMs. To illustrate, we show how
the main property of SCRUMs, Centrality, is implied by Quantile Acyclicity in this
restricted setting. Consider three alternatives, x < y < z, and suppose that the
probability of choosing y from menu {x, y, z} is strictly positive, i.e., ρ(y, {x, y, z}) > 0.
Suppose, by way of contradiction, that ρ(z, {x, y, z}) 6= ρ(z, {y, z}). If ρ(z, {x, y, z}) >
ρ(z, {y, z}), it must be ρ(x, {x, y, z}) + ρ(y, {x, y, z}) < ρ(y, {y, z}) and the quantile
definition together with the ordered nature of choices guarantee the existence of a value
p such that cp({x, y, z}) = z, but cp({y, z}) = y. If ρ(z, {x, y, z}) < ρ(z, {y, z}), and
given that ρ(y, {x, y, z}) > 0, there must exist some p such that cp({x, y, z}) = y, but
cp({y, z}) = z. In both cases, there is a contradiction with the fact that cp satisfies the
classical property α and, consequently, a violation of the acyclicity of cp.

B.2. Semi-nonparametric case. We now present a discrete choice version of the
semi-nonparametric results in the main text, which allows us to relate the present
results to Apesteguia and Ballester (2023). To do so, fix a parametrization γ that
generates ordered choices. That is, in any given menu Aj ∈ D, types (−∞, t1j) uniquely

select 1j, types (t1j , t
2
j) uniquely select 2j, and so on and so forth, with types (t

Ij
j ,∞)

uniquely selecting Ij + 1.47 Let the utility functions in γ be characterized by a certain
deterministic property, that we call γ(R)-Rationalizability and define Quantile γ(R)-
Rationalizability accordingly.

The Monotonicity property of Apesteguia and Ballester (2023) reads as follows: for
every B ⊆ A ∈ D and B′ ⊆ A′ ∈ D, if the set of types maximizing in B within

46Centrality: x < y < z or z < y < x and ρ(y, {x, y, z}) > 0 imply ρ(z, {x, y, z}) = ρ(z, {y, z}).
47Since in the continuous setting types have no mass, the choice at threshold types is irrelevant

and ties can be avoided. Moreover, we simplify notation and discard from a menu alternatives that

are not maximal for any type.
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A is included in the set of types maximizing in B′ within A′, then
∑

x∈B ρ(x,A) ≤∑
x∈B′ ρ(x,A′).

Proposition 3. Let γ be any type-utility map. ρ is ORUM-rationalizable with type-
utility map γ if and only if every ρ satisfies Quantile γ(R)-Rationalizability, if and only
if ρ satisfies Monotonicity.

Proof of Proposition 3 The result follows immediately from Proposition 1 and the
characterization result of Apesteguia and Ballester (2023). �

Proposition 3 shows that the model of Apesteguia and Ballester (2023) is equivalent
to a discrete choice version of the semi-nonparametric model described in Theorem
3. The connection between the quantile rationalizability approach of the present pa-
per, and the property of Monotonicity can be presented as follows. Suppose that ρ
satisfies quantile rationalizability and assume, by way of contradiction, that Mono-
tonicity fails. When Monotonicity fails, it can be shown that a cumulative violation
of Monotonicity must exist. Namely, there exist (ij, Aj) and (i′j′ , Aj′) such that the
types maximizing below ij in Aj contain the types maximizing below i′j′ in Aj′ , i.e.,

tij ≥ ti
′

j′ , but we observe ρ̄(ij, Aj) < ρ̄(i′j′ , Aj′). That is, every preference with prop-
erty γ(R)-Rationalizability maximizing below i′j′ in Aj′ must also maximize below ij in
Aj. Hence, given the inequality in cumulative choice probabilities the quantile choice

function c
ρ(i′

j′ ,Aj′ ) violates property γ(R)-Rationalizability, a contradiction.

B.3. Parametric case. We now consider the parametric version of ordered logit in
a discrete setting. To do so, fix a map γ and assume the logistic distribution. In the
ordered-logit model the cumulative choice probability of alternatives {1j, 2j, . . . , ij} in
decision problem Aj is determined by the threshold type tij as

G(τ,σ)(tij) =
1

1 + e−(tij−τ)/σ
.

The ordered-logit rationalization of choice data requires, therefore, that G(τ,σ)(tij) =
ρ̄(ij, Aj).

We assume Positivity that, given the ordered nature of the setting, is equivalent to
0 < ρ̄(1j, Aj) < · · · < ρ̄(ij, Aj) < · · · < ρ̄(Ij, Aj) < 1 = ρ̄(Ij + 1, Aj) for every Aj ∈ D.
In addition, we make the following technical assumption: there exist threshold types
ti1j1 , t

i2
j2
, ti3j3 , t

i4
j4

, and ti
∗
j∗ such that ρ̄(i1, Aj1) < ρ̄(i∗, Aj∗) = .5 < ρ̄(i2, Aj2), and the value

t
i3
j3
−ti∗
j∗

t
i4
j4
−ti∗
j∗

is an irrational number.

We introduce a version of CLA that characterizes ordered-logistic choice in discrete
settings. Consider any two equally-sized collections of threshold types. The property
states that the sum of the first collection is larger than that of the second if and only
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if the corresponding sum of cumulative log-odds in the former is larger than that in
the latter.48

Discrete Cumulative Log-Odds Additivity (D-CLA). For every positive inte-
ger M , and for every two collections of threshold types {ti1j1 , . . . , t

im
jm
, . . . , tiMjM} and

{ti
′
1

j′1
, . . . , t

i′m
j′m
, . . . , t

i′M
j′M
},
∑M

m=1 t
im
jm
≥
∑M

m=1 t
i′m
j′m

if and only if
∑M

m=1 `jm(im) ≥
∑M

m=1 `j′m(i′m).

Proposition 4. Let γ be any type-utility map. ρ is ORUM-rationalizable with type-
utility map γ and a type distribution in GL if and only if ρ satisfies D-CLA.

Proof of Proposition 4: In a discrete setting, it is immediate to see that any choice
data that is rationalized by an ordered-logit model must satisfy D-CLA. We then need
to prove the sufficiency part of the result. For this, we start by constructing a function
over the reals. By assumption, there is a threshold type ti

∗
j∗ such that ρ̄(i∗, Aj∗) = .5.

Consider then the subsets of real numbers

T = {x : x = tij − ti
∗

j∗ for some Aj ∈ D and ij < Ij + 1},

T IC = {x : x is an integer combination of elements in T }.
It is immediate to see that T IC is a subgroup of the reals, and given our technical
assumption on the existence of threshold types producing a ratio that is irrational,
well-known results guarantee that T IC must be dense in the reals.49 We can then
find, for every x ∈ R, a sequence of elements (x1, x2, . . . , xk, . . . ) in T IC such that
xk → x. Each of the elements xk in this sequence is an integer combination of elements
in T and hence, we can find collections of threshold types {ti1j1 , . . . , t

iv
jv
, . . . , tiVjV } and

{si1j1 , . . . , s
iw
jw
, . . . , siWjW } such that xk =

∑V
v=1 nv(t

iv
jv
− ti∗j∗) −

∑W
w=1 nw(siwjw − t

i∗
j∗), where

all nv and nw are strictly positive integers. Consider the real value Hk(x) that solves

the equality log Hk(x)
1−Hk(x)

=
∑V

v=1 nv`jv(iv) −
∑W

w=1 nw`jw(iw). Denoting by H(x) the

limit of the sequence of values formed by Hk(x), we have constructed a function H
over the reals.

First of all, notice that for any given threshold type t, there may be several decision
problems which have this value t as a threshold type. D-CLA guarantees that the
cumulative choice probability is the same in both decision problems, and hence the
function H is well defined.50 We now prove that H is increasing. Let x < x′. We know
that there exist sequences of elements (x1, x2, . . . , xk, . . . ) and (x′1, x

′
2, . . . , x

′
k, . . . ) in

T IC such that xk → x and x′k → x′. Since x < x′, there exists K such that xk < x′k
for every k ≥ K. Let k ≥ K, and consider the integer representations of xk given

by {nv, tivjv}
V
v=1 and {nw, siwjw}

W
w=1 and of x′k given by {n′v, t

i′v
j′v
}V ′v=1 and {n′w, s

i′w
j′w
}W ′w=1.

48The cumulative log-odds in the discrete setting follow from the definition used in the continuous

setting, with F replaced by ρ̄. Notice that the continuous setting helps in the presentation of the

property by focusing on pairs of types.
49See, e.g., Theorem 1.6 in Salzmann, Grundhöfer, Hähl and Löwen (2007).
50Indeed, the same idea applies to the extension of H to any real number, by using limits of integer

combinations of threshold types. This argument is omitted below.
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Consider the two positive integer values
∑V

v=1 nv +
∑W ′

w=1 n
′
w and

∑V ′

v=1 n
′
v +
∑W

w=1 nw,
one of which must be larger than the other. Consider w.l.o.g, that the former is the
larger and, on this basis, construct the following two collections of threshold types.
In collection one, we perform nv repetitions, from v = 1 to V , of the threshold type

tivjv , and n′w repetitions, from w = 1 to W ′, of the threshold type s
i′w
j′w

. In the second

collection, we perform n′v repetitions, from v = 1 to V ′, of the threshold type t
i′v
j′v

; nw

repetitions, from w = 1 to W , of the threshold types siwjw ; and, finally,
∑V

v=1 nv +∑W ′

w=1 n
′
w −

∑V ′

v=1 n
′
v −
∑W

w=1 nw repetitions of the threshold type ti
∗
j∗ . By construction,

these two collections have the same number of components, all of which are threshold
types. Moreover, given that xk < x′k, the sum of types is strictly smaller in the
former collection than in the latter, and the application of D-CLA guarantees that
the sum of cumulative log-odds is strictly smaller in the former collection than in
the latter. The limit definition of H guarantees that H(x) ≤ H(x′). Similarly, it
is immediate to see that H is continuous and, given the definition of ti

∗
j∗ , it is also

obvious that H(0) = .5. Moreover, by assumption, there are threshold types ti1j1 and

ti2j2 such that ρ̄(i1, Aj1) < ρ̄(i∗, Aj∗) = .5 < ρ̄(i2, Aj2) and hence by taking into account

the sequences of real numbers given by {ti1j1 − t
i∗
j∗ , 2(ti1j1 − t

i∗
j∗), . . . , k(ti1j1 − t

i∗
j∗), . . . } and

{ti2j2−t
i∗
j∗ , 2(ti2j2−t

i∗
j∗), . . . , k(ti2j2−t

i∗
j∗), . . . }, it is obvious that H approaches 0 (respectively

1) when considering real values approaching−∞ (respectively,∞). It is also immediate
to see that H satisfies property 4 as described in the proof of Theorem 4.

Consider now the following function defined over the positive reals:

O(x) =
1−H(x)

H(x)
.

From the properties of H, it is immediate that 1−O(x) must be a continuous CDF over
the positive reals and that O(x)O(z) = O(x + z) must hold for every pair of positive
real values x and z. The same arguments used in the proof of Theorem 4 can be used
to show the logistic nature of H, as desired. �

Proposition 4 is the discrete version of Theorem 4. Note that the strategies followed
in the corresponding proofs are rather different. In the case of continuous choice, choice
data from a decision problem provide information on an interval of types that must be
extended to the real line in a way that satisfies the additive requirements of CLA. Then,
we use the intersection of the intervals of types across menus and the CLA property to
guarantee that all these extensions follow the same logistic distribution. However, each
discrete choice problem provides information only over a finite number of thresholds.
Given the sparsity of these thresholds, we need to consider all of them together, and
expand the information to the real line. We do this by using integer combinations of
these thresholds, which, from classic results, are known to form a dense subset of the
reals. In order to implement this strategy, we need a stronger additivity property, D-
CLA, which operates not only over pairs of types but over two equally-sized collections
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of types. Once the extension to the reals is done, we can complete the proof using
arguments from the proof of Theorem 4.51

Appendix C. Mixed Ordered Logit

It is well-known that RUMs can be approximated by mixed-logit models (see, Mc-
Fadden and Train (2000)). We show here that the same kind of approximation can be
established in the ORUM framework. Given Theorem 2 we only need to discuss the
case in which the type-utility map γ is fixed. Denote by GML the set of all possible
mixed-logistic distributions, i.e., the convex hull of GL.

Theorem 5. Let γ be any type-utility map. If F is ORUM-rationalizable with type-
utility map γ, there is a sequence {G1, . . . , Gn, . . . } with Gn ∈ GML, such that F n → F ,
where F n is ORUM-rationalizable with type-utility map γ and type distribution Gn.

Proof of Theorem 5: Consider any F that is ORUM-rationalizable with type-utility
map γ. We first show that for any utility function U in the image of γ, i.e., γ(t) = U
for some t, there exists a sequence of ordered logits producing choice distributions that
converge to the deterministic choice function generated by U . Consider a sequence of
ordered logits, all of them using map γ, in which the n−th element of the sequence has
mean τn = t and standard deviation 1

n
. For every menu Aj, consider the element xj such

that aj(xj) = aj(U). It is immediate that for every ε > 0, we can find a neighborhood
of aj(xj) such that the cumulative choice probability in that neighborhood approaches
1 whenever n→∞. Given finiteness of the domain of menus, this concludes the proof
of the claim.

We now prove the main statement. Let G be the type distribution rationalizing
F . For every U in the image of γ, consider the sequence of real-valued intervals {In},
where In = [−n, n]. Consider a sequence of finite subsets of real numbers Kn, where
Kn is formed by those elements resulting from a partitioning of In into n2 equal-size
intervals. This sequence has the property of both expanding its support and becoming
finer when n grows. For every value of n, consider the following mixed ordered logit:
for every t ∈ Kn, use the ordered logit such that τ = t and σ = 1

n
. When n grows

large, we know that this ordered logit approximates the choice frequencies of utility
γ(t). Denote by (t′, t′′) the interval formed by the elements in Kn right before and right
after t. Given continuity, this ordered logit approximates well the choice frequencies
generated by the truncated distribution over types (t′, t′′). To each sub-interval, assign
the cumulative mass assigned that corresponds to γ and G. Given finiteness of the
domain of menus, the mixed ordered logit approximates well the choice frequencies
predicted by the truncation of the ORUM to interval In. The result follows. �

51As in the continuous case, the discrete setting also has a unique pair of parameters (τ, σ) ratio-

nalizing the data.
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Appendix D. Additional Tables

Menu π1
j π2

j q1
j φ1

j φ2
j Menu π1

j π2
j q1

j φ1
j φ2

j

1 .024 .011 .696 .034 .035 11 .026 .066 .461 .057 .122

2 .025 .045 .393 .064 .074 12 .039 .089 .542 .073 .194

3 .043 .052 .500 .085 .103 13 .059 .056 .774 .076 .247

4 .068 .051 .644 .106 .144 14 .010 .071 .328 .031 .106

5 .054 .099 .425 .126 .172 15 .045 .088 .638 .070 .244

6 .075 .051 .669 .112 .154 16 .078 .097 .756 .104 .398

7 .091 .046 .752 .122 .186 17 .027 .076 .611 .044 .196

8 .090 .074 .664 .135 .219 18 .030 .075 .767 .040 .324

9 .045 .043 .639 .071 .120 19 .022 .096 .658 .034 .280

10 .073 .039 .764 .095 .166 20 .013 .081 .779 .017 .368

Table 11. Risk: Menus with states ordered by φj

Menu φj 20 obs 80 obs 160 obs 480 obs

1 1.019 5 8.75 9.375 13.958

2 1.168 5 10.00 15.000 12.292

3 1.216 15 13.75 17.500 11.875

4 1.360 10 16.25 12.500 10.625

5 1.364 15 21.25 8.750 10.833

6 1.374 10 13.75 15.625 11.667

7 1.532 10 10.00 10.000 12.500

8 1.622 5 15.00 11.250 12.500

9 1.699 20 11.25 14.375 13.750

10 1.743 25 6.25 9.375 11.875

11 2.151 10 15.00 13.125 13.125

12 2.672 0 16.25 9.375 12.292

13 3.241 25 11.25 10.000 13.125

14 3.445 15 8.75 12.500 11.458

15 3.457 5 12.50 10.625 11.042

16 3.832 20 10.00 13.125 12.500

17 4.451 30 16.25 11.250 12.500

18 8.178 10 12.50 11.250 12.500

19 8.343 30 10.00 8.750 9.792

20 21.841 15 8.75 15.000 11.042

Table 12. Risk: Share of observations with r = 0

Menu φj 20 obs 80 obs 160 obs 480 obs

1 1.019 .989 .990 .990 .992

2 1.168 .906 .917 .925 .946

3 1.216 .905 .895 .924 .925

4 1.360 .777 .857 .883 .888

5 1.364 .835 .880 .894 .880

6 1.374 .836 .879 .837 .891

7 1.532 .784 .842 .843 .832

8 1.622 .684 .767 .810 .863

9 1.699 .733 .765 .783 .810

10 1.743 .721 .818 .802 .822

11 2.151 .648 .604 .702 .767

12 2.672 .496 .577 .684 .652

13 3.241 .463 .531 .615 .632

14 3.445 .505 .610 .567 .713

15 3.457 .537 .582 .541 .651

16 3.832 .343 .535 .561 .592

17 4.451 .433 .494 .581 .547

18 8.178 .203 .379 .406 .488

19 8.343 .418 .431 .361 .387

20 21.841 .102 .248 .264 .270

Table 13. Risk: Largest r across menus

Menu π1
j π2

j πj Menu π1
j π2

j πj

1 7.064 .010 .071 11 .958 .045 .043

2 6.208 .013 .081 12 .824 .052 .043

3 2.512 .026 .066 13 .821 .090 .074

4 1.977 .046 .091 14 .679 .075 .051

5 1.963 .045 .088 15 .541 .099 .054

6 1.856 .039 .073 16 .444 .024 .011

7 1.805 .025 .045 17 .444 .089 .039

8 1.331 .051 .068 18 .402 .075 .030

9 1.234 .078 .097 19 .353 .076 .027

10 1.056 .056 .059 20 .231 .096 .022

Table 14. Altruism: Menus
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Menu πj 20 obs 80 obs 160 obs 480 obs

1 7.064 25 26.25 23.750 24.375

2 6.208 20 21.25 25.000 26.042

3 2.512 35 21.25 24.375 25.417

4 1.977 25 28.75 27.500 23.750

5 1.963 30 20.00 22.500 28.542

6 1.856 15 28.75 28.125 30.000

7 1.805 25 21.25 24.375 27.917

8 1.331 15 33.75 23.750 29.167

9 1.234 10 21.25 28.125 26.875

10 1.056 35 23.75 22.500 26.458

11 .958 25 27.50 23.750 26.250

12 .824 15 28.75 25.000 24.583

13 .821 30 26.25 26.875 28.125

14 .679 25 22.50 30.625 29.792

15 .541 35 25.00 28.125 23.958

16 .444 25 22.50 28.750 25.000

17 .444 25 31.25 31.250 26.042

18 .402 10 25.00 30.000 28.125

19 .353 20 23.75 30.625 26.458

20 .231 25 21.25 26.875 26.875

Table 15. Altruism: Share of observations with vj = 0

Menu φj 20 obs 80 obs 160 obs 480 obs

1 7.064 .045 .045 .045 .058

2 6.208 .037 .056 .072 .077

3 2.512 .154 .254 .255 .421

4 1.977 .294 .394 .415 .499

5 1.963 .168 .359 .310 .566

6 1.856 .310 .294 .330 .585

7 1.805 .213 .464 .613 .629

8 1.331 .528 .510 .574 .649

9 1.234 .616 .499 .570 .794

10 1.056 .617 .648 .860 .804

11 .958 .486 .701 .737 .888

12 .824 .772 .555 .862 .889

13 .821 .640 .971 .796 .894

14 .679 .949 .859 .993 .965

15 .541 .607 .978 .985 .995

16 .444 .935 .969 .994 .999

17 .444 .947 .990 .989 1.000

18 .402 .998 .995 1.000 1.000

19 .353 .994 1.000 1.000 1.000

20 .231 .996 1.000 1.000 1.000

Table 16. Altruism: Largest vj across menus
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