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Abstract. This paper introduces the random discounted expected utility (R-DEU)

model, which we have developed as a means to deal with heterogeneous risk and time

preferences. The R-DEU model provides an explicit linkage between preference and

choice heterogeneity. We prove it has solid comparative statics, discuss its identification,

and demonstrate its computational convenience. Finally, we use two distinct experimental

datasets to illustrate the advantages of the R-DEU model over common alternatives for

estimating heterogeneity in preferences across individuals.
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1. Introduction

Economic situations simultaneously involving risk and time pervade most spheres of

everyday life, and heterogeneity of behavior is the rule. In this paper, we develop a model

for the treatment of heterogeneous risk and time preferences. For standard experimental

design environments, we establish the model’s predicted choice probabilities and show that

it has intuitive comparative statics. We also demonstrate that it is easily implementable

in practice, and that it accounts remarkably well for the observed heterogeneity of choice

in two key experimental designs. Overall, we provide a well-founded and convenient novel

framework for the analysis of heterogeneous risk and time preferences.
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Our stochastic model is based on a probability distribution over a given collection of

utility functions. This enables us to establish a direct link between preference and choice

heterogeneity. We adopt the most standard family of utilities for the treatment of risk and

time, namely, discounted expected utilities, and thus name the model random discounted

expected utility (R-DEU).1 We study it under the two main experimental risk and time

elicitation mechanisms: double multiple price lists (DMPL) and convex budgets (CB).

The sharp contrast between these two mechanisms, one involving binary choices and the

other a continuous choice space, enables us to show that the model is very flexible.

The adoption of random utility models (RUMs) with stochastic preference parameters

in empirical applications has been slow partly due to their computational complexity. The

computation of choice probabilities in these models involves numerical integration over

multiple variables, difficulting the analytical study of their properties and their econometric

identification. In the case of discounted expected utility, this demands integrating the joint

distribution of two variables: the discounting factor and the curvature of the monetary

utility function. We show, however, that the R-DEU model is analytically tractable: given

any curvature of the monetary function, we prove that there is always an ordered structure

linking discounting and choices. Thus, the conditional choice probabilities for any given

curvature can be computed straightforwardly and then easily aggregated, rendering the

model theoretically and empirically convenient.

Using the above conditional choice probability approach, we then establish, for the first

time, the stochastic comparative statics of the R-DEU. We analyze shifts and spreads of

the probability distribution over the two main components of discounted expected utility:

curvature and discounting. Although the theoretical treatment of comparative statics

involving more than one parameter is challenging, the results are consistent with common

understanding. First, we find that a shift in the probability distribution towards higher

discounting has an effect only in problems involving time, where it shifts choices towards

earlier options. Second, a shift in the probability distribution towards larger curvatures

has an effect in all types of problems: generating choice shifts (i) towards safer options

in multiple price lists involving risk, (ii) towards earlier options in multiple price lists

1Not to be confused with the Rank-Dependent Expected Utility Model introduced by Quiggin (1982).
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involving time, and (iii) towards smoother consumptions in convex sets. Furthermore,

a wider spread in any variable in the probability distribution leads to higher choice

stochasticity. These results are fundamental in providing the economic literature with a

well-founded framework for the proper interpretation and estimation of the variables of

interest, i.e., discounting and curvature.

All the former results are for general discounted expected utility representations and

unrestricted probability distributions. We then discuss the implications of these results

for standard parameterizations. Following common practice in the literature, we consider

constant relative risk aversion (CRRA) monetary utility functions, which are determined

by a parameter r describing the curvature.2 Hence, every utility is characterized by

a pair of parameters (r, δ), where δ captures discounting. To give further intuition of

the properties of the model, its identification, and empirical implementation, we also

consider the standard special case where r and δ follow a bivariate normal distribution.

This added parametric structure further accentuates the convenience of the model: the

choice computation requires the evaluation of conditional and marginal distributions of a

bivariate normal, which are themselves normal distributions. It follows that the parametric

assumption reduces the dimensionality of the numerical problem, making the computation

of choice probabilities routine. Moreover, shifts and spreads in the probability distribution

are the result of variations in the first two moments of the distribution, facilitating the

identification in the parametric case.

After establishing the theoretical grounds of the model, we illustrate its empirical

advantages with a structural estimation exercise using data from two major exemplars of

the type of elicitation mechanisms considered: Andersen,Harrison, Lau, and Rutstrom

(2008) (hereafter AHLR) and Andreoni and Sprenger (2012b) (hereafter AS). We compare

the aggregate and individual-level estimates of the R-DEU model with those obtained

using the empirical strategies employed in the respective papers and subsequent literature.

2The literature contemplates a variety of formulations of this utility function, some of which have
perverse implications after introducing time considerations. In Section 2.1, we discuss the necessary
conditions for the appropriate use of a CRRA family in an environment involving both risk and time.
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The literature has often used iid-additive RUMs to analyze DMPL experimental designs,

where decision problems are binary, involve only risk or time considerations, and a single-

dated lottery defines alternatives. Theoretically, implementing this approach with standard

representations of discounted expected utility could lead to paradoxical predictions and

perverse comparative statics properties (Wilcox, 2011; Apesteguia and Ballester, 2018),

thus hindering a thorough understanding of risk and time preferences. Moreover, we

show empirically that the R-DEU model offers a better overall fit. It also performs

better than recent iid-additive RUM implementations using Wilcox’s (2011) correction.

There are stark differences across models at the individual level: the R-DEU model

delivers reasonable estimates of risk and time preferences, which are highly correlated with

commonly used estimates obtained from decision switching within risk and time tasks

in DMPL designs. On the contrary, the iid-additive RUMs are only weakly correlated

with these semi-parametric estimates and take implausible values for a specific subset of

individuals that we identify.

In CB experimental designs, menus are continuous, involve risk and time considerations,

and each alternative grants a pair of dated lotteries. For this experimental design, the

literature has often relied on estimating risk and time preferences using non-linear least

squares, assuming a unique discounted expected utility. To do so, researchers introduce

randomness by perturbing the first-order condition of a constrained utility-maximization

problem. The randomness introduced in this approach lacks a behavioral foundation in

that it does not explicitly connect heterogeneity of choice with heterogeneity of preferences.

Moreover, this approach is not well suited to understanding the large heterogeneity in

choices observed in the data. Another approach in the analysis of CB datasets uses, as in

the case of DMPLs, iid-additive RUMs. Empirically, this multinomial extension tends

to deliver estimated utility functions that are convex as a way to explain the pervasive

share of corner solutions observed in CB settings, at the cost of leaving unexplained the

large fraction of choices in the intermediate range of budget sets. In contrast to these

approaches, we show how R-DEU empirically accounts for the observed prevalence of

corner and interior choices while delivering plausible estimates of discounting and the

curvature of the utility function.
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To conclude, the theoretical results and empirical applications illustrate the usefulness

of the R-DEU model as a robust and unifying framework for estimating risk and time

preferences with experimental data while accounting for the large heterogeneity in choices

between and across individuals. The entire exercise of the paper is related to recent

methodological literature on preference estimations in a variety of settings (see, e.g.,

DellaVigna, 2018; Cattaneo et al., 2020; Dardanoni et al., 2020; Aguiar and Kashaev,

2021; Barseghyan et al., 2021; Lau and Yoo, 2023). Our paper stands apart from this

literature in that it focuses jointly on risk and time preferences and establishes the

comparative statics of the model.

2. Random Discounted Expected Utility

A lottery is a finite collection of monetary prizes and associated probabilities, i.e., a

vector of the form l = [p1, . . . , pn, . . . , pN ;x1, . . . , xn, . . . xN ], with pn ≥ 0,
∑N

n=1 pn = 1,

and xn ≥ 0. A dated lottery (l, t) is formed by a lottery and a moment in time t ≥ 0, in

which the resulting prize is awarded.3

Discounted expected utility (DEU) is the most commonly-used deterministic model

of behavior for the study of risk and time preferences. We consider a family {ur}r∈R of

continuous and strictly increasing utility functions over money, that are normalized to

satisfy ur(ω) = 0 at a baseline wealth level ω > 0. We impose three basic assumptions

on the family of monetary utilities. First, it must include the linear monetary utility,

that we denote by r = 0. Second, the family is strictly ordered by concavity, i.e., r < r′

means that ur′ is “strictly more concave” than ur.
4 Third, convexity and concavity are

unbounded when r tends to −∞ and +∞, respectively. Many families satisfy these basic

requirements, including the widely used CRRA or the constant absolute risk aversion

(CARA) utility functions. The discount factor of the individual is denoted by e−δ with

3When necessary, we denote the prizes, payoffs, and the number of outcomes of dated lotteries
j = 1, . . . , J as xj

n, p
j
n, and Nj . We also assume, as it is typically done, that the awarded monetary prizes

are consumed on reception.
4Formally, u is “strictly more concave” than u′ if there exists an increasing and strictly concave

function ϕ such that u′(x) = ϕ(u(x)) for every x. As a result, utilities with r > 0 (resp., r < 0) represent
risk aversion (resp., risk loving). As shown in Pratt (1964), this condition is equivalent to the condition
that the certainty equivalent of u is strictly lower than the certainty equivalent of u′ for any lottery l. See
also Proposition 6.C.2 in Mas-Colell, Whinston and Greene (1995) and Propositions 6.7 and 6.8 in Kreps
(2013).
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δ ∈ R.5 Given parameters (r, δ) ∈ R2, the DEU evaluation of a sequence of dated lotteries

(l1, t1), . . . , (lJ , tJ) is:

(2.1) DEUr,δ((l
1, t1), . . . , (lJ , tJ)) =

J∑
j=1

e−δtj
Nj∑
n=1

pjnur(ω + xj
n).

We are now in a position to define the stochastic model that we analyze in the paper, that

we call Random Discounted Expected Utility (R-DEU) model. Let f be a measurable

density with full support over R2, capturing the prevalence of each possible DEU preference.

At the moment of choice from a decision problem, parameters (r, δ) are realized with

probability f(r, δ), and the alternative that maximizes DEUr,δ within the decision problem

is selected.6

We now describe formally the decision problems involved in the two settings analyzed

in this paper. One of the most prominent settings in the experimental literature involves

the use of the so-called double multiple price lists (DMPLs) as in Andersen et al. (2008),

where decision problems are binary, involve only either risk or time considerations, and

alternatives are defined by a single dated lottery.7 In a risk decision problem, each of the

two alternatives corresponds to a single two-state contingent lottery with prizes awarded

in the present. That is, given x1
1 > x0

1 > x0
2 > x1

2 and p ∈ (0, 1), the associated risk menu is

AR = {0R, 1R} where 0R = ([p, 1− p;x0
1, x

0
2], 0) and 1R = ([p, 1− p;x1

1, x
1
2], 0).

8 In a time

decision problem, each of the two alternatives is composed by a unique dated degenerate

lottery. That is, given t0 < t1 and x0 < x1, the associated time menu is AT = {0T , 1T }

where 0T = ([1; x0], t0) and 1T = ([1; x1], t1). Given the binary nature of risk and time

menus, the R-DEU choice probabilities in any decision problem are determined by the

choice probability of one of the two alternatives in the menu, say 0R in a risk menu and 0T

5Hence, δ > 0 (resp., δ < 0) represents impatience or delay aversion (resp., delay loving). We write
the discount factor in this way for convenience; it allows us to use a simple bivariate normal in the
parametric estimation. Note that, alternatively, we could simply write (1 + d)−1 = e−δ ∈ R++ with d
representing the discount factor in the positive reals.

6Given that f is assumed to be measurable, indifferences between maximal alternatives are inessential,
and will be obviated in the paper.

7See also Burks et al. (2009), Dohmen et al. (2010), Tanaka et al. (2010), Benjamin et al. (2013),
Falk et al. (2018) or Jagelka (2021). In Appendix B, we study a hybrid version where both risk and
time considerations are simultaneously active. (see, Ahlbrecht and Weber (1997), Coble and Lusk (2010),
Baucells and Heukamp (2012) and Cheung (2015)).

8Sometimes, p ∈ {0, 1} is considered. These cases are trivial since one of the two lotteries is dominated
and, hence, predicted a zero probability of choice by R-DEU.
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in a time menu. Denote by Γ(0R, AR) ⊆ R2 (resp., Γ(0T , AT ) ⊆ R2) the collection of all

parameter combinations (r, δ) for which the maximizer of DEUr,δ within menu AR (resp.,

AT ) is 0R (resp., 0T ). The f -measures of these sets describe the choice probabilities:

Pf (0R, AR) =

∫
Γ(0R,AR)

f(r, δ)d(r, δ),

Pf (0T , AT ) =

∫
Γ(0T ,AT )

f(r, δ)d(r, δ).

In an alternative setting pioneered by Andreoni and Sprenger (2012a,b), subjects are

faced with the so-called convex menus.9 These menus are continuous, involve risk and

time considerations, and each alternative grants a pair of dated lotteries. Formally, given

x0 ≤ x1, t0 < t1 and p0, p1 ∈ (0, 1], the associated convex menu is AC = [0, 1] where

alternative a ∈ AC is defined by the sequence of two dated lotteries ([p0, 1 − p0; (1 −

a)x0, 0], t0), ([p1, 1− p1; ax1, 0], t1). Given the continuous nature of convex menus, the R-

DEU choice probabilities are determined by the cumulative choice probability of selecting

alternatives below any given value a ∈ [0, 1]. Denote by Γ([0, a], AC) ⊆ R2 the collection

of all parameter combinations (r, δ) for which the maximizer of DEUr,δ within menu AC

is an alternative below a. The f -measures of these sets describe the choice probabilities:

Pf ([0, a], AC) =

∫
Γ([0,a],AC)

f(r, δ)d(r, δ).

2.1. Parametric Version. All our theoretical results are for general discounted expected

utility representations and unrestricted probability distributions. However, specific pa-

rameterizations are often times useful, both as an illustration of the main insights of

a theoretical result and as a practical tool in an estimation exercise. We illustrate the

intuition of every theoretical result using CRRA monetary utility functions.

Given parameter r ∈ R, the CRRA utility evaluation of an extra prize x ≥ 0 is:

ucrra
r (ω + x) =


(ω+x)1−r − ω1−r

1− r
whenever r ̸= 1;

log(ω + x)− logω otherwise.

9Convex menus are being used extensively for the study of a variety of economic preferences. See,
e.g., Choi et al. (2007), Fisman et al. (2007), Augenblick et al. (2015), Carvalho et al. (2016), Alan and
Ertac (2018), and Kim et al. (2018).
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Let us briefly comment on the rationale behind the constants chosen for the CRRA family,

since the literature contemplates many different formulations and not all of them are

appropriate when both risk and time are involved. First, as in the case of the study

of risk preferences alone, parameter r can be assumed to belong to R, but note that

this necessitates the baseline wealth assumption ω > 0. Otherwise, monetary utilities

{ucrra
r }r≥1 would not be well-defined for null prizes. Second, we then need to guarantee

that all monetary utilities are strictly increasing and, hence, the raw power function

(ω + x)1−r must be re-scaled with the constant 1
1−r

. Third, since this re-scaling creates

negative utilities whenever r > 1, the addition of the constant −ω1−r

1−r
guarantees positive

utilities, makes ucrra
r (ω) = 0, facilitating the analysis of lotteries involving null prizes, and

implies the standard continuity property limr→1 u
crra
r (ω + x) = ucrra

1 (ω + x).10

When focusing on the parametric case, we will also impose some restrictions on the

probability distribution f . The computational methods discussed in Appendix C allow

the efficient estimation of the model for any distribution characterized by a finite vector

of parameters θ ∈ Θ.11 We illustrate with the case where (r, δ) follows a bivariate normal

distribution, so that θ ≡ (µr, σr, µδ, σδ, ρ), where µz and σz are the corresponding mean

and standard deviation of parameter z ∈ {r, δ}, and ρ is the correlation coefficient between

r and δ. This assumption provides a natural benchmark to compare the model and the

empirical results in the following sections to other models in the literature. As we show

below, it also allows for simple expressions of the choice probabilities in the model, which

we will exploit to provide conditions allowing the identification of θ in each experimental

setting.

3. Double Multiple Price Lists: Theory

3.1. Risk Menus. Given that in these decision problems all the action takes place in the

present, the discount parameter δ plays no role. Moreover, the type of lotteries at stake

always creates an intuitive, ordered, structure of choices for parameter r. For every risk

menu AR we show below that there is a real-value constant K(AR) such that alternative

0R is chosen if and only if r ≥ K(AR). Hence, the choice probability of alternative 0R

10A discussion on the role of wealth ω in CRRA utilities can be read in Appendix E.
11We illustrate an example with truncated normal and beta distributions Appendix D.
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is the f -measure of the rectangular set Γ(0R, AR) = {(r, δ) : r ≥ K(AR)}, that can be

conveniently computed by using the marginal CDF of r, denoted F r.

Moreover, comparative statics related to shifts and spreads of parameter r follow

immediately, and are in full alignment with our most basic intuitions. When the mass of

the marginal distribution of r is shifted towards larger values, the choice probability of

the safer alternative is guaranteed to strictly increase. When the mass of the marginal

distribution of r is brought away from its median, the choice probability of both alternatives

strictly approaches one half, i.e., behavior becomes strictly more stochastic.12

To formalize these ideas, we need to define standard domination and expansion notions

using CDFs. Formally, let F and G be two CDFs over the random variable z, with domain

in an open interval, and denote by med(F ) the median of distribution F . Then, we say

that: (i) F dominates G if F (z) < G(z) holds for all values of z and (ii) F expands G if

med(F ) = med(G), F (z) > G(z) whenever z < med(F ) and F (z) < G(z) whenever z >

med(F ).13

Proposition 1. For every pair of R-DEUs, f and g, and every menu AR:

(1) Pf (0R, AR) = 1− F r(K(AR)).

(2) If F r dominates Gr, Pf (0R, AR) > Pg(0R, AR).

(3) If F r expands Gr with K(AR) ̸= med(F r), |Pf (0R, AR)− 1
2
| < |Pg(0R, AR)− 1

2
|.

3.2. Time Menus. When time is at stake, understanding behavior is slightly more

complicated because the discount parameter δ, on its own, is hardly informative about

behavior.

Example 1. Let two DEU–CRRA individuals with ω = 100 and preference parameters

(r1, δ1) = (0.95, 0.094) and (r2, δ2) = (0, 0.105). Although δ1 < δ2 (or equivalently e−δ1 =

0.91 > 0.9 = e−δ2) may suggest that individual 1 is more patient, it is immediate to see

that she is indeed the only one that prefers ([1; 71.5], 0) to ([1; 80], 1).

12There is an obvious exception to this principle when choice stochasticity is already maximal, with
both alternatives being chosen with the same probability 1/2. This happens when the median of F r

coincides with the separating threshold K(AR).
13The proof of Propositions 1, 2 and 5 can be found in Appendix A, while those of Propositions 3, 4, 6

and 7 are in Section A of the supplementary material.
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The joint consideration of both parameters is then required to fully understand the

predictions of DEU, and consequently, the R-DEU choice probabilities would now require

to compute a double integration. Fortunately, we show below that the analysis renders

again simple after conditioning on parameter r, because this always generates an intuitive,

ordered, structure of choices over the discounting parameter δ. For any given time menu

AT and any value of r, we show below that there exists a menu-dependent constant

K(AT |r) ∈ R+ such that the earlier alternative 0T is selected if and only if δ ≥ K(AT |r),

i.e., Γ(0T , AT ) = {(r, δ) : δ ≥ K(AT |r)}. As a result, the choice probability of alternative

0T can be conveniently expressed by means of the choice probabilities conditional on

parameter r. In short, we evaluate the conditional CDFs of parameter δ on parameter r,

that we denote by Fδ|r, at the corresponding threshold K(AT |r), and then aggregate across

values of r using its marginal density, that we denote by f r. Proposition 2 builds upon

this ordered structure, showing that the thresholds {K(AT |r)}r∈R are strictly decreasing

in r, and constitute a bijection from R to R++, which can thus be inverted.14 Hence,

comparative statics of shifts are immediate, as keeping constant the marginal distribution

of r (resp., δ), and shifting upwards the conditional distributions of δ (resp., r) guarantee

an increase in the choice probability of the earlier alternative 0T . Second, with respect

to spreads, we can again show that keeping constant the marginal distribution of one

parameter, an expansion of the conditional distributions of the other always creates more

stochasticity.15

Proposition 2. For every pair of R-DEUs, f and g, and every menu AT :

(1) Pf (0T , AT ) = 1−
∫
r
Fδ|rK(AT |r)f r(r)dr = 1−

∫
δ>0

Fr|δK(AT |δ)f δ(δ)dδ.

(2) (a) If F r = Gr, and for all r Fδ|r dominates Gδ|r, Pf (0T , AT ) ≥ Pg(0T , AT ).

(b) If F δ = Gδ, and for all δ Fr|δ dominates Gr|δ, Pf (0T , AT ) ≥ Pg(0T , AT ).

(3) (a) If F r = Gr, and for all r Fδ|r expands Gδ|r with K(AT |r) ̸= med(Fδ|r),

|Pf (0T , AT )− 1
2
| < |Pg(0T , AT )− 1

2
|.

14In other words, conditioning on δ also renders ordered choices over parameter r. Whenever δ ≤ 0,
1T is always chosen. Whenever δ > 0 there is a menu-dependent constant K(AT |δ) ∈ R such that 0T is
chosen if and only if r ≥ K(AT |δ).

15As in the case of risk, the median of each conditional distribution Fδ|r must be different to the
corresponding threshold K(AT |r) when expansions of δ are considered, with an analogous expression for
the case of r.
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(b) If F δ = Gδ, and for all δ Fr|δ expands Gr|δ with K(AT |δ) ̸= med(Fr|δ),

|Pf (0T , AT )− 1
2
| < |Pg(0T , AT )− 1

2
|.

3.3. Implications for the Parametric Version. The general results of Propositions 1

and 2 have the following implications when using the particular case of CRRA and the

bivariate normal. In the case of CRRA, the thresholds described in Proposition 1 simply

correspond to the unique value of r that solves the equation 1−p
p

=
(ω+x1

1)
1−r−(ω+x0

1)
1−r

(ω+x0
2)

1−r−(ω+x1
2)

1−r . In

the bivariate normal, the marginal distribution of parameter r is normally distributed,

with parameters µr and σr. Putting both things together, part 1 states that the analysis

of choice probabilities in R-DEU is a straightforward computational exercise. Moreover,

dominating shifts and expansions of F r are the result of an increase in, respectively, µr

and σr. Hence, parts 2 and 3 inform the analyst that straightforward intuitions are in

place. An increase in the median of parameter r creates always a larger probability of

choice for the safer alternative, while an increase in the variance of parameter r generates

more choice stochasticity.

Similarly, we can read Proposition 2 from the parametric point of view. With CRRA, the

threshold map can be written as K(AT |r) = 1
t1−t0

log
[
(ω+x1)1−r−ω1−r

(ω+x0)1−r−ω1−r

]
. With the bivariate

normal, all conditionals Fδ|r are also normal, with mean µδ +
σδ

σr
ρ(r − µr) and standard

deviation
√

1− ρ2 · σδ. This, combined with the already-mentioned normality of f r

makes the computation of probabilities a straightforward exercise. Moreover, considering

z, z′ ∈ {r, δ} with z ≠ z′, an increase of µz leaves unaffected the marginal F z′ while

generating a dominating shift in all conditionals Fz|z′ . Hence, part 2 states that, by

increasing either the mean of δ or the mean of r, we generate a larger choice probability for

the earlier alternative. Third, increasing σz leaves unaffected the marginal F z′ and, under

the appropriate correction of the covariance, it generates the expansion of all conditionals

Fz|z′ . Hence, part 3 states that an increase of the variance of either r or δ, with the

appropriate correction of the covariance, will produce more choice stochasticity.

Propositions 1 and 2 set the basis for the non-parametric identification of the model.

We now study the identification of parameters θ, under the assumption that (r, δ) follows

a bivariate normal distribution. Consider a DMPL dataset O consisting of a set of

observations of the choice of a subject, or group of subjects, when presented with a
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risk or time menu. Assume that the dataset has M of such menus, denoted as Am for

m = 1, . . . ,M . The following proposition shows that two risk menus and three time

menus, with properties commonly found in existing experimental datasets, are sufficient

to identify θ.

Proposition 3. Suppose that the dataset O contains:

(a) Two risk menus {AR,a, AR,b} such that K (AR,a) ̸= K (AR,b).

(b) Three time menus {AT ,c, AT ,d, AT ,e} differing in one of three dimensions:

(i) the delay t1m − t0m (ii) the current prize x0
m (iii) the future prize x1

m.

Then, θ is identified.

Intuitively, the proof of Proposition 3 shows that we can use variation in the indifference

thresholds K (AR) across risk menus to identify the parameters (µr, σr) characterizing the

marginal distribution of r. Conditional on (µr, σr), we can use the variation in the delay

across time menus offering the same prizes to recover (µδ, σδ, ρ). Alternatively, one can

use variation in the implicit return rate across time menus (that is, variation in (x0, x1))

to replace variation in delays.

Under standard regularity conditions, identification of θ implies the consistency of

maximum likelihood estimators of this parameter vector. This property guarantees that

an analyst can recover the population value of θ with a large enough sample of observations.

Nevertheless, one may be concerned about the behavior of these estimators with small

experimental samples. The following result shows that the true parameters can be inferred

with as few as five menus, alleviating these concerns.

Proposition 4. For any θ ∈ Θ, there exist five DMPL menus that allow to infer its value

exactly.

In experimental settings, risk and time menus are usually tailored to include variation

that allows researchers to infer a set of values of risk aversion and discounting under the

assumption that subjects have deterministic preferences and maximize their discounted

expected utility. As discussed in the next section, researchers use switches in choices across

menus with different indifference thresholds to estimate an interval containing the point

value of a subject’s risk aversion coefficient (assuming a CRRA utility function) or her
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discount rate, given a value of the risk aversion coefficient. Proposition 3 shows that the

same type of variation allows researchers to infer the parameters of R-DEU representation

under parametric assumptions. Moreover, Proposition 4 shows that researchers can also

tailor the DMPL menus of an experimental design to maximize their ability to infer a set

of parameter values. We conclude the discussion with an example.16

Example 2. Let ω → 0 and (µr, σr, µδ, σδ, ρ) = (0.7, 0.7, 0.05, 0.02,−0.5). Consider first

risk menus. The choice probability of ([0.5, 0.5; 50, 40], 0) versus ([0.5, 0.5; 68, 25], 0) is

approximately 1 − Φ(0) = 0.5, and since the threshold of this problem is 0.7, we have

µr = 0.7. The choice probability of ([0.5, 0.5; 50, 40], 0) versus ([0.5, 0.5; 95, 25], 0) is

1 − Φ(1) = 0.16, and since the threshold of this problem is 1.4, σr = 1.4 − 0.7 = 0.7.

Consider now time menus. As argued in the proof of Proposition 4, when ω → 0 the

threshold map becomes the piece-wise linear map min{0, K(AT )(1 − r)}, which can be

approximated by the linear map K(AT )(1 − r) that passes through the point (1, 0) and

has slope −K(AT ). Then, consider the choice probability of ([1; 59], 0) versus ([1; 70], 1)

which is approximately 0.5, and since the constant of this menu is approximately 0.5
3
, we

have µδ = 0.5
3
(1 − 0.7) = 0.05. Now, consider the choice probability of ([1; 70 − ϵ], 0),

with ϵ small, versus ([1; 70], 1) that is equal to 0.99. This corresponds to two and a half

standard deviations of the normal, and since the constant in this case is 0, it follows that

µδ

σδ
= Φ−1(0.99) = 2.5, and hence σδ = 0.02. Finally, the time menu involving ([1; 68], 0)

and ([1; 70], 1) has constant 0.029, which is equal to the ratio of standard deviations.

Hence, since the choice probability of the earlier option is approximately 0.98 (which

corresponds to two standard deviations of the normal), it must be ρ = 1
2

[ −0.3
0.7

+2.5

2

]2
− 1

which is approximately −0.5.

4. Double Multiple Price Lists: Empirical Illustration

In this section, we illustrate the empirical application of the R-DEU model to DMPL

datasets by estimating the parametric version of the model and comparing its results to

those obtained employing alternative structural models previously used in the literature.

For this purpose, we use data from AHLR. In this experimental study, the authors

16Following the standard convention, we let Φ(·) and ϕ(·) denote the CDF and PDF of the standard
normal distribution.
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presented a sample 253 individuals representative of the Danish population with four risk

tasks. Each task was comprised of up to ten risk menus. The monetary prizes of the

safe and risky alternative, (x0
1, x

0
2, x

1
1, x

1
2), varied between each task. All menus shared

the same prizes within a given task but differed in the payoff probabilities (p0, p1). The

experiment also presented each individual with six time tasks of up to 10 time menus

which shared the same early prize x0. All menus in a given time task also shared the

same payoff delay k but varied in the value of the delayed prize x1. The delay k and

payoff dates (t0, t1) changed across tasks.17 Following these authors, we also assume the

integrated average daily wealth value ω is common across individuals and equal to 118

Danish kroner (DKK) in 2003, equivalent to approximately 30 USD that year.

We are interested in estimating risk aversion and discounting at both population and

individual levels. For this reason, we restrict the analysis to a subsample from the original

dataset, satisfying the following restrictions: first, we discard observations corresponding

to four risk menus and six time menus containing dominated lotteries.18 Second, we drop

from the sample individuals reporting indifference between the two alternatives in some

tasks. Finally, we focus on individuals whose choice switches from the safe lottery to the

risky one in at least one of the four risk tasks and also switch from the early lottery to the

delayed one in at least one of the six time tasks. In other words, we drop from the sample

individuals who made the same choice in all the risk or time tasks.19 These restrictions

leave us with an estimation sample of 202 individuals, each facing up to 36 risk menus

and up to 54 time menus.

Before discussing the methodology for estimating the structural models, we present the

results from a semi-parametric estimator based on an elicitation procedure frequently used

in the literature. These estimates provide a useful benchmark and will give a first picture

of the degree of heterogeneity in preferences within and across individuals in the dataset.

17An example of these tasks shown in Appendix F.
18We do this for expositional purposes. Extending the model by adding a tremble probability to

include menus with dominated alternatives is straightforward. See, for instance, Apesteguia and Ballester
(2018) and Jagelka (2024).

19This restriction is not necessary to compute estimates at the population level. However, it is
necessary to obtain comparable estimates across individuals and models. The reason is that, in all models
we consider here, variation in choices is required to point-identify the parameters associated with the
coefficient of risk aversion and the discount rate of an individual. If choices are the same in all menus, we
can only set-identify these parameters.
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4.1. Semi-Parametric Estimation. Employing multiple price lists to produce interval

estimates of r and δ is common. In a given risk task, one can identify the two adjacent

menus where a subject’s decision switches from the safe lottery to the risky one. The

indifference threshold K(AR) of these menus provides a lower and upper bound of the

interval of values of r consistent with this switch. Alternative estimators can be computed

from these intervals, but it is common practice to use the midpoint of this interval as a

point estimate of r. Using this procedure in the AHLR dataset results in four estimates

for each subject, which we can interpret as draws from the individuals’ distribution of r.20

We can thus compute estimates of µr and σr for each individual from the average and

standard deviation of the elicited draws. We can also compute population estimates of

these parameters by pooling all individual draws.

Conditional on a value of r, we can follow a similar procedure to obtain draws of δ from

the indifference thresholds K(AT |r) from the adjacent menus in a time task where the

choice of the individual switches from the early to the delayed lottery. We repeat this

procedure across the six time tasks using each of the four draws of r obtained for this

individual, obtaining 24 draws of δ for each individual. We use these draws to compute

individual and population estimates of µδ and σδ as before. We also compute estimates of

ρ from the sample correlation of these draws. We label these as semi-parametric estimates

(SPE) of θ since they are obtained under parametric assumptions of the utility function

but do not specify any particular distribution for (r, δ).

The last column of Table 1 shows the estimated parameters obtained using the previous

procedure and pooling all individual draws. Three results are worth noting. First, the

average risk aversion coefficient is 0.715, which aligns with estimates in the experimental

literature and the structural estimates reported in AHLR. Similarly, the average (annual)

20This procedure is similar to the one followed by Andreoni and Sprenger (2012a) to estimate the
curvature of the utility function using the DMPL design. Other alternatives include choosing the point
that makes the subject appear more patient or risk-averse. Without additional assumptions, there is
no obvious reason to prefer one alternative over the others in these applications. Through the lens of
the R-DEU model, the choice of the midpoint is consistent with the belief that r follows a uniform
distribution, conditional on being on the chosen interval. Thus, one can think of the DMPL intervals
as producing a piecewise approximation of the CDF of r. The accuracy of this approximation increases
as the number of intervals increases and their amplitude becomes small. For the results in this section,
choosing other points in the interval has limited impact on the estimated value of σr but can change the
value of µr estimated for each individual. However, a change in location affects all individuals similarly
and has little effect on the relationship observed between the semi-parametric estimator and the other
estimators analyzed.
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discount rate is 13.8%, which is higher than the one estimated by AHLR but is still on

the lower end of estimates obtained from experimental datasets.

Second, there is a large degree of heterogeneity in preferences. The standard deviation

of all the draws of r and δ in the sample is 0.833 and 0.165, respectively. Notably, a large

fraction of this variation corresponds to heterogeneity within subjects. To see this, we

compute the summary statistics of the estimates of (µr, µδ) at the individual level and

report them in Table 2.21 The standard deviation of µr across individuals is 0.608, implying

that almost half the variance in r comes from variation between subjects. Similarly, the

standard deviation of µδ across individuals is 0.111, indicating that around 44% of the

variance in δ comes from variation between subjects.

Finally, there is a large and negative correlation between r and δ. The estimated

correlation coefficient, -0.761, is very similar to the correlation between the individual

estimates (µr, µδ), which is -0.807. As discussed in Proposition 2, higher values of r and

lower values of δ generate a larger choice probability of the earlier alternative in time

menus. Hence, the negative correlation between r and δ is consistent with the observed

behavior in the time menus of the dataset.

4.2. Structural Estimation. We now turn to the structural estimation of θ using the

parametric R-DEU model and, for the sake of comparison, two other structural alternatives.

Our dataset contains a collection of menus {Am}Mm=1 and a set of N observations for

i = 1, . . . , I individuals, which we denote as O. The observation (i,m) records the choice

of individual i on menu m as an indicator function Yi,m that takes a value of zero when

the individual chooses the early/safe lottery in the menu (denoted as 0m), and takes a

value of one otherwise. To compute the population estimates, we follow the literature and

assume preferences admit a representative agent so that Pθ(0m, Am) is independent of i.

Under this assumption, we can write the log-likelihood function of the data, conditional

on parameter vector θ, as:

logL (θ|O) =
1

N

∑
i,m

[
(1− Yi,m) logPθ(0m, Am) + Yi,m log(1− Pθ(0m, Am))

]
.

21Table 3 reports the corresponding summary statistics for the individual estimates of (σr, σδ).
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We compute the maximum-likelihood estimator of θ by numerically maximizing the

previous log-likelihood. This estimator is consistent and asymptotically normal under

standard regularity conditions as long as θ is identified. We compute robust standard

errors of the estimates clustered at the individual level and estimate preference parameters

by subject similarly using the subsample of O corresponding to each individual.

All that is left is to specify Pθ(0m, Am). Propositions 1 and 2 give the choice probabilities

of the R-DEU model.22 Finally, note that the AHLR dataset satisfies the conditions

discussed in Proposition 3. It follows that the R-DEU model is identified, and our estimates

are consistent and asymptotically efficient.

We also consider two alternative models previously used in the literature. The first

model assumes that there is a unique underlying preference (that is, r = µr and δ = µδ)

subject to iid-additive noise, where choices are given by the following rule:

(4.1) Pθ(0m, Am) =
DEUr,δ(0m)

1
σ

DEUr,δ(0m)
1
σ +DEUr,δ(1m)

1
σ

,

with DEUr,δ(0m) and DEUr,δ(1m) denoting, respectively, the discounted expected utility

of the early/safe lottery and the late/risky lottery in Am, as defined in equation (2.1). This

probability rule follows Luce (1959) and was introduced to the estimation of risk preferences

by Holt and Laury (2002). It corresponds to the specification used in AHLR to compute

population estimates of risk aversion and discounting with their data. Following these

authors, we specify ur(x) =
(x+ω)1−r

1−r
and allow the noise parameter σ to differ between

risk and time tasks so that the model is characterized by four parameters: (µr, σr, µδ, σδ).

We label this model as LUCE. It is important to emphasize that this model has several

theoretical problems that complicate the interpretation of estimates. First, as shown in

Apesteguia and Ballester (2018), the presence of iid-additive shocks makes Pθ(0m, Am) a

non-monotonic function of (r, δ).23 Consequently, the model is potentially not identified

since different values of these parameters may rationalize the same observed probability.

Second, the functional form used in the monetary valuations generates the sort of problems

22Appendix C describes the numerical method used to evaluate these probabilities efficiently by
exploiting the assumption that r and δ follow a bivariate normal distribution.

23Notice that, as discussed in Apesteguia and Ballester (2018), the non-monotonicities are driven by
the non-linearity of the utility representations; the standard use of mixed-logit models does not share
these problems since they typically assume a latent utility that is linear on the parameters of interest.
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discussed in Section 2.1. In particular, valuations are negative when r > 1, which in turn

generates further problems in the power expression of equation (4.1) involving imaginary

numbers and leading to smaller choice probabilities of better alternatives.24

The second model also assumes deterministic preferences but considers instead the

following specification of the probability of choosing the early/safe lottery and the late/risky

lottery in menu Am:

(4.2) Pθ(0m, Am) = Φ

(
DEUr,δ(0m)−DEUr,δ(1m)

νmσ

)
,

where νm is a menu-specific normalizing constant and σ is a noise parameter taking

different values in risk and time tasks. This model is based on the “contextual error”

specification proposed by Wilcox (2011) and applied empirically by Andersen et al. (2014)

and Harrison et al. (2020). Following these authors, we assume νm = 1 for menus in time

tasks and set νm equal to the maximum utility across prizes in Am minus the minimum

utility across prizes in the same menu.25 The model is thus characterized by the parameters

(µr, σr, µδ, σδ), and we label it as WILCOX.26

4.3. Population Estimates. We begin by reporting the estimated parameters at the

population level in Table 1. The second, third, and fourth columns show the estimates of

the R-DEU, LUCE and WILCOX models, respectively.

The estimated average risk aversion coefficient µr under the R-DEU model is 0.781,

slightly higher than that obtained from the SPE. On the other hand, the estimated value

of σr is 0.895, which is very similar to the one obtained using the SPE estimates. The

estimated mean discount rate is 12.5%, which is also close but slightly lower than the

13.8% from the SPE. The estimated σδ is slightly lower but close in magnitude to the

standard deviation from the SPE. Finally, the estimated correlation of -0.958 is large

24Some of these theoretical problems also apply to the next alternative model and to the iid-additive
RUM used in the empirical analysis of CB settings. In what follows, we will focus on the empirical
comparisons with R-DEU.

25Unlike these authors, we use the CDF of a normal distribution instead of a logistic distribution to
map the latent index to probabilities. This difference is not important for the results.

26The literature has also considered the use of random coefficient models, or mixed-logit models, for
structurally estimating risk and time preferences (see, for instance, Andersen et al. (2008) and Andersen
et al. (2014)). These models are very flexible and allow two levels of variation, one at the individual level
and one at the population level. At the individual level, they are akin to the iid-additive RUM model
above. At the population level, they allow variability in both r and δ across individuals. However, they
share some of the theoretical problems of the two previous models, so we do not consider them here.
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in magnitude and negative, consistent with the results from the SPE estimates and the

comparative statics of the R-DEU model discussed in the previous section. The close

relationship between the semi-parametric estimates and parametric estimates from the

R-DEU model illustrates the intuitive and close mapping of the parameters in the R-DEU

model to the variation in choices and menus in the dataset.

Comparing the results of R-DEU model with those of LUCE and WILCOX, we can

see that the population estimates of µr and µδ are very similar across models and, in the

case of µr, we cannot reject the hypothesis that these are statistically equal. However, the

estimated values of σr and σδ are quite different across models. In the case of the R-DEU

model, both parameters have a direct mapping to the variance of r and δ in the SPE.

On the other hand, the LUCE and WILCOX models treat these as noise parameters

related to the volatility of the utility shocks. For this reason, their mapping to the data is

less straightforward. Comparing the log-likelihoods of the estimated models, we can see

that the R-DEU model has a slightly better fit to the data than the other two models

due to a greater ability to explain choices in time menus. This is unsurprising since the

R-DEU model allows for correlation between r and δ, providing an extra parameter to

fit the data. Nevertheless, the differences in fit are small, and the estimated values of

average risk aversion µr and discounting µδ are similar across the three structural models.

4.4. Individual Estimates. We now turn attention to the estimates at the individual

level. Table 2 shows summary statistics of the estimated values of µr and µδ for each

individual under the corresponding structural model. The last three rows of Table 2

report the Pearson correlation coefficient, the Kendall rank correlation coefficient, and

the Spearman rank correlation coefficient between the individual estimates under each

structural model and the corresponding SPE.

The moments of the individual estimates are very similar in the R-DEU and SPE

models. In particular, the mean and standard deviation of µr and µδ across individuals are

remarkably close to their corresponding population estimates. In addition, we see that all

three measures of correlation are positive and very large, providing further evidence of the

tight relationship between the semi-parametric and R-DEU estimates, both qualitatively

and quantitatively.
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In contrast, the mean and standard deviation of the individual estimates obtained

using the LUCE and WILCOX models differ substantially from their SPE and population

counterparts. The mean risk aversion coefficient in both models is negative, and the

standard deviation is an order of magnitude larger than the population estimate. Similarly,

the mean and standard deviation of the individual estimates of µδ presents implausible

large values under the two alternative models. The Pearson correlation with the SPE in

both cases is close to zero, although the rank correlation measures are higher in comparison.

This suggests that the puzzling results are driven by a share of individuals for which

the models estimate implausible values of µr and µδ. Looking at the quantiles of the

distribution of µr and µδ under LUCE and WILCOX, we can see that the presence of

a large mass of atypical values in the tails of the distribution provokes the unexpected

values for the mean and standard deviation.

To understand the differences in performance across structural models, Figure 1 displays

scatterplots of the estimated values of µr and µδ against the corresponding value obtained

using the semi-parametric estimates. The latter provides a good benchmark of the values

of the risk-aversion coefficient and the discount rate we would expect from each individual,

given their choices across tasks.

The first row shows the corresponding plots for the R-DEU model. We can see that each

dot in both scatterplots is close to the 45-degree line, confirming the close relationship

between the R-DEU and SPE estimates observed in the summary statistics of Table

2. Table 3 and Figure 2 show that this close relationship also holds for the individual

estimates of σr and σδ.

The second row in Figure 1 shows the corresponding scatterplots for the LUCE model.

Three things are worth highlighting. First, there is a stark upper bound in the estimates

of µr obtained using this model. This bound follows from the problems mentioned above

when r > 1. This is not an issue on the population estimates, given that, for this particular

dataset, the average risk aversion coefficient across individuals is below the threshold, as

suggested by the SPE. However, it is a problematic restriction for individual estimates.

According to the SPE, around 36% choices in risk menus are consistent with r > 1, and

one-third of the sample subjects have µr > 1. Second, the estimated µδ tracks, on average,
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the corresponding SPE. For low values of µδ, the LUCE estimate is higher than the

corresponding SPE. This is a consequence of the upper bound on µr: suppose a subject

with r > 1 chooses the delayed lottery over the early one in many time menus. This

behavior is consistent with having large values of r, low values of δ, or both. However,

the upper bound makes the model underestimate the risk aversion coefficient of this

individual. Consequently, it has to over-estimate this subject’s δ to rationalize her choices

in time menus. Finally, note that there are several individuals for which the LUCE model

estimates extremely low values of r. Similarly, the model estimates implausible large or

negative discount rates for many subjects in the sample.

At first glance, this behavior is disconnected from their choices as it seems uncorrelated

with their SPE. To understand the source of this erratic behavior, we distinguish two

groups of subjects in each scatterplot. In the left column of Figure 1, the first group

(plotted as circles) corresponds to 103 subjects who switched from the safe to the risky

lottery in all four risk tasks. The remaining 99 subjects (shown as triangles) compose

the second group. These subjects did not switch in at least one of the four risk tasks.

The right column of Figure 1 shows as circles the 112 subjects who switched from the

early lottery to the delayed lottery in all six time tasks. Finally, we show as triangles

the remaining 90 subjects that did not switch in at least one of the six time tasks. We

can see a clear pattern: the subjects for which the LUCE model estimates implausible

values of µr and µδ are usually subjects who did not switch in at least one of the tasks.

These subjects display relatively extreme preferences together with some degree of choice

stochasticity, which the LUCE model is unable to capture. Importantly, these subjects

are not simple outliers as they compose almost half of the sample in this experimental

setting.

The corresponding results for the WILCOX model are shown in the third row of Figure

1. Compared to the LUCE model, the model does a better job capturing the heterogeneity

in µr and µδ reflected in the SPE estimates. However, it also delivers implausibly large

values of µr for a large part of the sample. The scatterplot shows that these large estimates

are usually obtained for subjects who did not switch in at least one of the risk tasks.

Consequently, the model also estimates values of µδ close to zero for many subjects with
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both low and large SPE. As discussed before, with large values of r, the individual is

more likely to choose delayed lotteries. Suppose this individual chooses the early lottery

in many of the time menus in the dataset. In that case, the model needs to compensate

the large value of r with extremely low values of δ to rationalize her choices. Finally, the

model also estimates implausible large values of µδ for subjects who did not switch in at

least one of the time tasks.

The results suggest that two alternative approaches to structurally estimate risk and

time preferences, the LUCE and WILCOX models, are not well suited to capture the

large heterogeneity in preferences between and within subjects on DMPL datasets. In

contrast, the R-DEU model offers a flexible framework with solid theoretical foundations,

clear identification restrictions, and an intuitive connection with choices in DMPL data

both at the population and individual levels.

5. Convex Menus: Theory

Although convex menus may seem more convoluted, the analysis can be analogously

simplified by conditioning again on parameter r. This creates an intuitive, ordered

structure of choices for parameter δ. Having fixed r, each a ∈ [0, 1) has an associated

threshold K(a,AC|r) ∈ (0, 1], such that the choice is below a if and only if the value

of parameter δ lies above the threshold. That is, Γ(a,AC) = {(r, δ) : δ ≥ K(a,AC|r)}.

In the case of convex monetary utilities, r ≤ 0, the threshold is unique, independent

of a, as only corner solutions have non-null probability. In the case of strictly concave

monetary utilities, r > 0, the threshold K(a,AC|r) corresponds to the unique value of

δ for which the first-order condition holds for alternative a, i.e., to the value of δ for

which the derivative of DEUr,δ(a) with respect to a is equal to zero. The computation of

the choice probabilities follows, again, from the weighted consideration of all conditional

distributions Fδ|r.

The comparative statics of shifts in parameter δ are the continuous analogous of the

case of AT . To understand the case of shifts in r, we now show that whenever r > 0, the

map {K(a,AC|r)}r∈R is strictly increasing in r if and only if a > ē = x0

x0+x1 , and strictly

decreasing whenever a < ē. The value ē is no coincidence, as it describes the allocation

that equalizes the two prizes, and hence the two wealths, across periods t0 and t1. Hence,
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we can show that fixing the marginal distribution of δ and shifting upwards the conditional

distributions of r, we generate a larger probability of choice for any neighborhood of ē,

i.e., choices become more balanced. This comparative statics exercise neatly reflects the

role of r > 0 in AC as inter-temporal substitution.

The comparative statics of spreads of the parameters are similar to the case of AT ,

simply accounting for the continuity of the choice variable. In the binary case of AT

the trade-off between earlier versus future prizes does necessarily involve the choice of

alternative 0T versus alternative 1T . In the current continuous case, this trade-off has

alternative ē as the critical value. Alternatives below (resp., above) ē allocate a larger

potential prize to the earlier period (resp., later period). We now show that, keeping

constant the marginal distribution of one parameter, an expansion of the conditional

distributions of the other parameter always brings the cumulative choice probability

Pf ([0, ē], AC) closer to 1/2. That is, the probabilities of choices below and above ē become

closer, implying that behavior is now more stochastic.

Proposition 5. For every pair of R-DEUs, f and g, and every menu AC:

(1) Pf ([0, a], AC) = 1−
∫
r
Fδ|r(K(a,AC|r))f r(r)dr.

(2) (a) If F r = Gr, and for all r Gδ|r dominates Fδ|r, Pf([0, a], AC) ≥ Pg([0, a], AC)

for every a ∈ [0, 1).

(b) If F δ = Gδ, and for all δ Fr|δ dominates Gr|δ, Pf ([0, a], AC)−Pf ([0, a], AC) ≥

Pg([0, a], AC)− Pg([0, a], AC) for every 0 < a < ē < a < 1.

(3) (a) If F r = Gr, and for all r Fδ|r expands Gδ|r with K(ē, AC|r) ̸= med F (δ|r),

|Pf ([0, ē], AC)− 1
2
| < |Pg([0, ē], AC)− 1

2
|.

(b) If F δ = Gδ, and for all δ Fr|δ expands Gr|δ with K(ē, AC|δ) ̸= med F (r|δ),

|Pf ([0, ē], AC)− 1
2
| < |Pg([0, ē], AC)− 1

2
|.

5.1. Implications for the Parametric Version. The implications of Proposition 5

for the parametric case of the CRRA and the bivariate normal are in line with the

general discussion. With convex utilities, the unique relevant threshold for δ separates

the choice of a = 0 and a = 1 and it corresponds to K(AC|r) = 1
t1−t0

log p1

p0
+K(AT |r) =

1
t1−t0

log p1

p0
+ 1

t1−t0
log

[
(ω+x1)1−r−ω1−r

(ω+x0)1−r−ω1−r

]
. In the concave part, the threshold for δ determining

a choice below a can be obtained from the first-order condition, and corresponds to
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K(AC|r) = 1
t1−t0

log p1

p0
+ 1

t1−t0
log x1

x0 +
1

t1−t0
r log

[
(1−a)x0+ω

ax1+ω

]
. There are three terms in the

expression; the first term is the same than the first term of the convex case and depends on

the probabilities, the second term is the limit when r → 0 of the second term of the convex

case, and the third term is unique to the concave case. The latter one shows that solutions

are a linear function of r. Moreover, solutions are in general interior, and whenever ω

tends to 0, they are always interior. Since the choice probabilities are again built on the

basis of the conditional probabilities that are normally distributed, computation is routine.

Ceteris paribus, an increase in the median of δ generates larger choice probabilities for

alternatives allocating more resources to the earlier period. Given the convex nature of

the menu, increasing the median of r has mostly a smoothing effect, equalizing the prizes

across the two time periods. As before, increasing either the variance of δ or of r leads to

more choice stochasticity.

As in the case of DMPLs, Proposition 5 sets the basis for the identification of the

model. We now study the identification of θ under parametric assumptions. Consider a

convex budget dataset O consisting of a set of observations of the tokens allocated by

an individual, or group of individuals, when presented with a set of convex menus AC,m

indexed by m = 1, . . . ,M . The following result shows that variation in pay-off delay and

variation in either the payoff probability or the return rate implicit across convex menus

is sufficient to identify θ.

Proposition 6. Suppose that the dataset O contains five convex menus with relatively

large payoffs, such that ω/x1 → 0 and ω/x0 → 0, satisfying the following conditions:

(a) Two of the menus {AC,a, AC,b} are such that (i) t1a − t0a = t1b − t0b and (ii) p1a/p
0
a ̸=

p1b/p
0
b or x1

a/x
0
a ̸= x1

b/x
0
b .

(b) The three remaining menus {AC,c, AC,d, AC,e} differ only in one of three dimensions:

(i) the delay t1m − t0m (ii) the current prize x0
m (iii) the future prize x1

m.

Then, θ is identified.

Intuitively, the proof of Proposition 6 shows that one can use two moments of the data

to identify the distribution of r: the share of interior choices and the elasticity of the

response of token allocations to either payoff probabilities or return rates. Using these
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moments to identify (µr, σr), one can then focus on identifying (µδ, σr, ρ) from the corner

solutions in the data. Specifically, when r < 0, the problem of the subject is analogous

to the discrete choice in time menus studied in DMPL settings. We can thus use the

same conditions used to identify θδ in Proposition 3 to identify these parameters from the

predicted behavior at corner allocations.

As in the case of DMPL lotteries, it is also possible to infer θ using a small number of

convex menus.

Proposition 7. For any θ ∈ Θ, there exist five convex menus that allow to infer its value

exactly.

Example 3. Consider again the case where ω → 0 and parameters (µr, σr, µδ, σδ, ρ) =

(0.7, 0.7, 0.05, 0.02,−0.5). Take first the convex problem defined by probabilities p0 = 1

and p1 = 0.8, payouts x0 = 15 and x1 = 20, and timings t0 = 0 and t1 = 0 + ϵ, with ϵ

small. The choice probability of a = 1 corresponds to one negative standard deviation,

and hence µr

σr
= 1. The risk aversion level above which the choice is below a = 0.48 is 0.7.

Since the cumulative choice probability at a = 0.48 is 0.5, we learn that µr = 0.7, and

from the above expression, σr = 0.7. We can now consider the convex version of the time

problems described in Example 1 by fixing p1 = p0, and reproduce the analysis there with

a hypothetical discrete choice problem in which we aggregate all observed probabilities of

options below 1/2 and options above 1/2.

6. Convex Menus: Empirical Illustration

We now illustrate the empirical application of the R-DEU model to convex budgets

using data from the experimental design in AS. In this study, the authors present 80

subjects with 84 convex menus. In each menu, the subject receives 100 tokens and

decides how many to allocate between two dates: t0 and t1. Every token allocated in t0 is

transformed into dollars at a rate q0 so that x0 = 100q0. Similarly, every token allocated

in t1 is exchanged into dollars at a rate q1 so that x1 = 100q1. The prizes x0 and x1

are rewarded with probabilities p0 and p1, respectively. Otherwise, the subject received

nothing. All menus fixed t0 to 7 days, and q0 to 0.20 USD per token, while varying the
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remaining menu characteristics. Consequently, the empirical design satisfies the conditions

for identification of the R-DEU model discussed in Proposition 6.

The dataset records the share of tokens a ∈ [0, 1] allocated in t1 by each subject i when

presented with each menu in {Am}Mm=1. Since tokens are not divisible, the experimental

implementation discretizes the choice set in S equidistant options α1 = [a1, a2], α
2 =

[a2, a3], . . . , α
S = [aS, aS+1], with a1 = 0 and aS+1 = 1. In the data, 93% of the choices

correspond to token allocations that are a multiple of 5. Consequently, we set S = 21, so

that a2 = 0.025, a3 = 0.075, . . . aS = 0.975. As a result, the dataset O contains a collection

of M = 84 convex menus faced by I = 80 individuals, for a total of N = 6720 observations.

The observation (i,m) records the choice of individual i on menu m as an indicator

function Yi,m(s) taking a value of one when the token allocation is contained in αs, and

zero otherwise. In what follows, we set ω = 5 USD, consistent with the participation

payment in AS.

6.1. Structural Estimation. To estimate the R-DEU model, we use our parametric

restrictions and follow a representative agent approach where the probability that am ∈ αs,

denoted as Pθ([as, as+1], Am), is independent of i and given by Proposition 5. We can

thus write the log-likelihood function of the data, conditional on parameter vector θ, as:

logL (θ|O) =
1

N

∑
i,m

∑
s

[
Yi,m(s) logPθ([as, as+1], Am)

]
.

As before, maximization of the previous log-likelihood yields a consistent and asymptot-

ically normal estimator of θ under standard regularity conditions. We compute robust

standard errors of the estimates clustered at the individual level and compare the estimates

of the R-DEU model with two alternative methods.

The first alternative method follows AS in estimating r and δ from the first order

condition associated with the convex budget problem using non-linear least squares (NLS)

to minimize the distance between predicted and observed allocation of tokens. This

method leads to the estimation of two preference parameters, µr and µδ, without an

explicit account for their heterogeneity.27

27Notice that the NLS method imposes larger penalties to larger deviations from the first-order
conditions, which may be read as larger penalties to larger deviations from the mean values of the
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The second alternative method employs an iid-additive RUM to estimate risk and time

preferences in convex budgets (see Harrison et al. (2013) and Cheung (2015)). In this

model, the probability of choosing alternative a in menu Am is given by:

Pθ([as, as+1], Am) =
eDEU(αs)

eDEU(0) + eDEU(α2) + . . .+ eDEU(1)
,

with α1 = 0, αS = 1, and αs = (as + as+1)/2 for s = 2, . . . , S − 1. As in the NLS

approach, this model assumes preferences are deterministic so that µr and µδ are the only

two parameters to be estimated. However, choice in this model is stochastic and thus

potentially consistent with the large heterogeneity in allocations observed in this type of

data.

Table 4 presents the estimated parameters under each model. Regarding risk aversion,

the R-DEU model estimates µr = 0.207 and σr = 0.752. Note that these are lower

than estimates from DMPL designs, probably due to the fact that here the curvature r

represents both, risk aversion and intertemporal substitution. However, it is positive and

statistically different from zero. This contrasts with the estimates from the iid-additive

RUM. The reason for these differences is simple: around 48% of the observations in the

dataset correspond to extreme allocations a = 0 or a = 1. To explain the large presence of

corner solutions, the iid-additive RUM requires estimating convex utility functions. The

additional flexibility of the R-DEU model allows it to match the large fraction of corner

solutions with a slightly concave utility function.28

As for the distribution of δ, we estimate an average annual discount rate of approximately

34%. This estimate is close to the 26% estimated using NLS and is almost half the annual

rate estimated using the iid-additive RUM. This difference may be explained by the larger

concavity of utility estimated in the R-DEU model, which is a substitute for a larger

discount factor to explain choices between a = 0 and a = 1 at the corners. Finally, we

underlying parameters. R-DEU formalizes this principle in terms of behavioral variation, allowing to
produce explicit probabilistic predictions.

28One advantage of having the whole distribution of r is that we can estimate additional moments
of interest and compute their corresponding standard errors using the delta method. For example, one
could be interested in E[r|r > 0], which provides information about the average curvature of the utility
function inferred from interior allocations. Given our estimates and parametric assumptions, we estimate
the value of this moment to be 0.68, with a standard error of 0.067.
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estimate a large variability in the discount factor, with a standard deviation of 1.8 and a

negative correlation coefficient of -0.16, lower than the one obtained using DMPL data.

The difference in population estimates and log-likelihoods present an incomplete picture

of the differences across models. Figure 3 shows the distribution of a across all observations

in the data and compares it with the corresponding distribution of choice predicted by

the model.

The first thing to note is that the fit of the R-DEU model in the full sample is quite

good. The model does a good job matching both the share of corner solutions and the

presence of interior choices distributed around a = 0.5. The iid-additive RUM, on the other

hand, misses both a large share of the corner allocations and the share of interior choices

around a = 0.5. Finally, since the NLS model does not specify how choice stochasticity

emerges, we cannot provide an explicit account for the choice heterogeneity in a given

menu. Instead, we can show the choices given by the estimated parameters, both at the

menu level and across menus. The second column of Figure 3 shows the observed and

predicted frequency of each share choice for a single menu in the dataset, for the three

models under consideration.29 It can be seen that the R-DEU model matches the choice

patterns observed in convex budgets both in the full sample and for particular menus.

The R-DEU model does a good job explaining the overall patterns of choice frequency

across all menus in the dataset. This is not to say that the R-DEU model is thus able to

rationalize any data. The model inherits many of the weaknesses of the assumptions of

expected utility and exponential discounting. One example is the common ratio property

discussed in AS. Figure 4 shows the predicted choice distribution across tasks sharing

the same payoff probabilities. We can see that the distribution is identical across menus

with the same ratio p0/p1, which is inconsistent with the observed choice patterns in the

data. Nevertheless, the tools we introduce can be used to extend the model to account for

these and other behavioral considerations. In Appendix D, we illustrate by estimating a

small extension of the model assuming β − δ preferences as in AS. We leave a theoretical

analysis of this and other extensions for future research.

29Figure 3 reports on menu (x0, x1, p0, p1, t0, t1) = (20, 20, 0.4, 0.5, 7, 45). Analogous conclusions are
obtained for any one of the 84 menus.
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7. Final Remarks

In this paper we have studied preference heterogeneity in the context of the most

standard treatment of risk and time preferences, and we have proposed and studied the

random discounted expected utility model. By using the ordered structure that links

parameters and choice, we have shown that the model is computationally convenient, and

well founded in terms of comparative statics. In addition, we have applied the model

to two very different datasets, and shown that the model accounts behavior remarkably

well in both cases. We believe that this is a promising approach to the treatment of

heterogeneity when multiple parameters are involved, such as in the study of social

preferences, ambiguity, limited attention, and other relevant behavioral considerations.

Appendix A. Proofs

Proof of Proposition 1: Consider a menu AR = {0R, 1R} = {([p, 1−p;x0
1, x

0
2], 0), ([p, 1−

p;x1
1, x

1
2], 0)}, such that x1

1 > x0
1 > x0

2 > x1
2 and p ∈ (0, 1). Consider r < r′. Construct

the affine transformations vr, vr′ of ur, ur′ satisfying vr(ω + x1
2) = vr′(ω + x1

2) = 0 and

vr(ω+x0
2) = vr′(ω+x0

2) = 1. By strict monotonicity of the original utility functions, it must

be vr(ω + x0
1) > 1 and vr′(ω + x0

1) > 1. We now claim that vr′(ω + x0
1) < vr(ω + x0

1) must

hold, and this will be proved by contradiction. Assume that vr′(ω + x0
1) ≥ vr(ω + x0

1) > 1.

In this case, we can consider the lotteries [p∗, 1− p∗;x0
1, x

1
2] and [1;x0

2], with
1

vr′ (ω+x0
1)

≤

p∗ ≤ 1
vr(ω+x0

1)
. It is immediate to see that the expected utility constructed upon vr leads

to, at least, weakly prefer lottery [1; x0
2] while the expected utility constructed upon vr′

leads to, at least, weakly prefer lottery [p∗, 1−p∗;x0
1, x

1
2]. This contradicts the fact that vr′ ,

being a strict concave transformation of vr, must have a strictly lower certainty equivalent

for the second, riskier lottery and hence, we have proved that vr′(ω + x0
1) < vr(ω + x0

1).

We now claim that vr′(ω + x1
1)− vr′(ω + x0

1) < vr(ω + x1
1)− vr(ω + x0

1) must hold, and

prove it by contradiction. If it were not true, given that we already proved vr′(ω + x0
1) <

vr(ω + x0
1), we would have

vr′ (ω+x1
1)−vr′ (ω+x0

1)

vr′ (ω+x0
1)

>
vr(ω+x1

1)−vr(ω+x0
1)

vr(ω+x0
1)

. Considering the lotteries

[p′, 1−p′;x1
1, x

1
2] and [1; x0

1], with
vr′ (ω+x1

1)−vr′ (ω+x0
1)

vr′ (ω+x0
1)

> 1−p′

p′
>

vr(ω+x1
1)−vr(ω+x0

1)

vr(ω+x0
1)

, the expected

utility constructed upon vr would lead to the choice of [1;x0
1] while the expected utility

constructed upon vr′ would lead to the choice of [p′, 1 − p′;x1
1, x

1
2]. This is again a
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contradiction with the concavity assumption, and concludes the argument; it must then

be vr′(ω + x1
1)− vr′(ω + x0

1) < vr(ω + x1
1)− vr(ω + x0

1).

We now claim that for every (r, δ) and (r′, δ′) such that r′ > r, if DEUr,δ(0R) ≥

DEUr,δ(1R), then DEUr′,δ′(0R) > DEUr′,δ′(1R). To see this, suppose that DEUr,δ(0R) ≥

DEUr,δ(1R). This is equivalent to claim that the expected utility of lottery [p, 1−p;x0
1, x

0
2]

is greater than the expected utility of lottery [p, 1− p;x1
1, x

1
2] when the monetary utility ur

is used. That is equivalent to claim that the expected utility of lottery [p, 1− p;x0
1, x

0
2] is

greater than the expected utility of lottery [p, 1− p;x1
1, x

1
2] when the monetary utility vr is

used, and can be written as 1−p
p

≥ vr(ω+x1
1)−vr(ω+x0

1)

vr(ω+x0
2)−vr(ω+x1

2)
= vr(ω+x1

1)−vr(ω+x0
1). From our pre-

vious claims, we know that it must be 1−p
p

> vr′(ω+ x1
1)− vr′(ω+ x0

1) =
vr′ (ω+x1

1)−vr′ (ω+x0
1)

vr′ (ω+x0
2)−vr′ (ω+x1

2)
,

which implies that the first lottery is strictly preferred to the second using vr′ or, alterna-

tively, using ur′ . This implies DEUr′,δ′(0R) > DEUr′,δ′(1R) and concludes the argument.

With the unbounded curvature assumption, the certainty equivalent of both lotteries must

converge to the maximum and minimum payout when r tends to −∞ and +∞, respectively.

That is, there are values of r for which 0R and 1R are preferred. As a result, there must

be a unique K(AR) ∈ R such that alternative 0R is preferred if and only if r ≥ K(AR)

which leads to Claim 1. For Claim 2, note that whenever F r dominates Gr, it must be

Pf (0R, AR) = 1− F r(K(AR)) > 1−Gr(K(AR)) = Pg(0R, AR). For Claim 3, notice that

the assumption requires us to consider two cases, med(F r) > K(AR) or med(F r) < K(AR).

In the first case, since F r expands Gr, it must be F r(K(AR)) > Gr(K(AR)) > 1/2, while

in the second case, it must be that F r(K(AR)) < Gr(K(AR)) < 1/2, concluding the proof.

■

Proof of Proposition 2: Consider a menu AT = {0T , 1T } = {([1;x0], t0), ([1;x1], t1)}

such that t0 < t1 and x0 < x1. From the definition of DEU , it follows immediately that

DEUr,δ(0T ) ≥ DEUr,δ(1T ) ⇔ δ ≥ K(AT |r) =
1

t1 − t0
log

ur(ω + x1)

ur(ω + x0)
.

Strict monotonicity of ur guarantees that this threshold is always a positive real value

and, hence, the first expression in Claim 1, and Claim 2a, follow immediately.
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We now claim that the threshold map {K(AT |r)}r∈R is strictly decreasing in r. To see

this, notice that scalar transformations leave DEU decisions unaffected. Hence, we can

select the scalar transformation vr of ur for which vr(ω + x1) = 1 holds and, then, we are

only required to show that − log vr(ω+x0)
t1−t0

is strictly decreasing in r or, equivalently, that

vr(ω+x0) is strictly increasing in r. Suppose by contradiction that this is not the case, i.e.,

vr(ω+x0) ≥ vr′(ω+x0) with r < r′. By considering the lotteries [p∗, 1− p∗;ω, ω+x1] and

[1;ω + x0], where vr(ω + x0) ≥ p∗ ≥ vr′(ω + x0), it is immediate to see that the expected

utility, using vr, is larger for the first lottery than for the second, while the expected

utility, using vr′ , is larger for the second lottery than for the first, a contradiction with

the strict concavity assumption. The threshold map is thus strictly decreasing in r.

The unbounded curvature assumption also proves that the map is onto for R++ and

hence, it is a bijective map between R and R++. Thus, it can be inverted to obtain the

strictly decreasing thresholds {K(AT |δ)}δ∈R++ , such that, for a given δ > 0, alternative 0T

is chosen if and only if r is above this threshold. For δ ≤ 0 alternative 1T is always chosen.

Hence, Pf(0T , AT ) =
∫
r
(1 − Fδ|r(K(AT |r)))f r(r)dr =

∫
δ>0

(1 − Fr|δ(K(AT |δ)))f δ(δ)dδ,

where f δ is the marginal density of δ. The second expression in Claim 1, and Claim 2b,

follow.

For Claim 3a, we just need to reproduce the logic of Proposition 1, expanding separately

each of the conditional distributions Fδ|r. This always creates a strictly larger conditional

stochasticity. From there, we need to prove that the argument extends to the weighted

aggregation of all these conditional distributions. To see this, notice that the continuity of

the map {K(AT |r)}r∈R guarantees that all conditional medians of δ lie on the same side

of the threshold map. As a result, the same alternative, either 0T or 1T , is chosen more

often in each of the conditionals, and the expansion argument extends to the aggregation.

For Claim 3b, a similar argument holds by expanding the conditionals Fr|δ and using the

continuity of the inverse map. ■

Proof of Proposition 5: Consider a menu AC defined by (p0, x0, t0; p1, x1, t1). We

first claim that, for every r ∈ R, the argument that maximizes DEUr,δ is decreasing

in δ. To see this, consider any pair of parameters (r, δ), and let a∗ ∈ [0, 1] be the
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argument that maximizes DEUr,δ. If a∗ = 1, we are done. Consider then the case

of a∗ < 1 and any alternative a∗ < a ≤ 1. Given the optimality of a∗, we know

that DEUδ,r(a) ≤ DEUδ,r(a
∗), i.e., e−δt0p0ur(ω + (1 − a)x0) + e−δt1p1ur(ω + ax1) ≤

e−δt0p0ur(ω+(1−a∗)x0)+e−δt1p1ur(ω+a∗x1) holds. The latter inequality is equivalent to

p0ur(ω+(1−a)x0)+e−δ(t1−t0)p1ur(ω+ax1) ≤ p0ur(ω+(1−a∗)x0)+e−δ(t1−t0)p1ur(ω+a∗x1).

Now, it is evident that an increase of δ leaves unaffected the first term in both the left and

the right hand sides but decreases more significantly the second term of the left hand side,

because the function ur is strictly increasing. Hence, alternative a∗ must be preferred to

alternative a for the larger δ, and the argument maximizing DEU must be a∗ or smaller.

We have proved our claim. Hence, given r ∈ R, we can define K(a,AC|r), a ∈ [0, 1), as

the infimum of the values of δ for which any alternative in [0, a] is the DEU maximizer.

Hence, the maximizer of DEUr,δ is below a if and only if δ lies above K(a,AC|r), i.e.,

Γ(a,A) = {(r, δ) : δ ≤ K(a,AC|r)}, and Claims 1 and 2a follow.

We now study the structure of the thresholds. We start with the case of convex

monetary utilities, i.e., r ≤ 0. Convexity and the fact that ur(ω) = 0 guarantee that

e−δt0p0ur(ω + (1 − a)x0) + e−δt1p1ur(ω + ax1) ≤ e−δt0p0[aur(ω) + (1 − a)ur(ω + x0)] +

e−δt1p1[(1 − a)ur(ω) + aur(ω + x1)] = e−δt0p0(1 − a)ur(ω + x0) + e−δt1p1aur(ω + x1) ≤

max{e−δt0p0ur(ω + x0), e−δt1p1ur(ω + x1)}. Hence, only alternatives 0 or 1 can be the

maximizers ofDEUr,δ. Thus, for every menu AC there is a unique thresholdK(a,AC|r) ∈ R,

independent of a, that corresponds to the δ that, given r, equalizes the DEU value of 0 and

1. This value is 1
t1−t0

log
[
p1ur(ω+x1)
p0ur(ω+x0)

]
, that can also be written as 1

t1−t0
log p1

p0
+K(AT |r),

with K(AT |r) referring to the hypothetical time menu in which prizes x0 and x1 are offered

at periods t0 and t1, without considering the probability of these prizes. Proposition 2

argued that K(AT |r) is strictly decreasing, and hence K(a,AC|r) is also strictly decreasing

whenever r ≤ 0.

We now analyze strictly concave utilities, r > 0. We start by claiming that the threshold

K(a,AC|r) is decreasing for every a > ē, and increasing for every a < ē. We start with

the former, assuming by contradiction that 0 < r < r′ but K(a,AC|r) < K(a,AC|r′) for

some a > ē. Using continuity and the definition of the thresholds, there must exist δ∗ with

K(a,AC|r) < δ∗ < K(a,AC|r′) such that the maximizer for DEUr,δ∗ is a
∗, with ē < a∗ < a.
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Consider any a′ > a∗. It must be DEUr,δ∗(a
∗) ≥ DEUr,δ∗(a

′), i.e., e−δ∗t0p0ur(ω + (1 −

a∗)x0)+ e−δ∗t1p1ur(ω+a∗x1) ≥ e−δ∗t0p0ur(ω+(1−a′)x0)+ e−δ∗t1p1ur(ω+a′x1). Dividing

both terms by the positive constant p0e−δ∗t0 + p1e−δ∗t1 and denoting p = p0e−δ∗t0

p0e−δ∗t0+p1e−δ∗t1 ,

the former expression can be written as pur(ω + (1 − a∗)x0) + (1 − p)ur(ω + a∗x1) ≥

pur(ω+ (1− a′)x0) + (1− p)ur(ω+ a′x1). Hence, the comparison of these two alternatives

is equivalent to that of a risk menu, with a∗ corresponding to alternative 0R and a′ to

alternative 1R. Hence, since a∗ is preferred at (r, δ∗), we know from Proposition 1 that

a∗ will also be preferred at (r′, δ∗) because r′ > r.30 Thus, the maximizer of DEUr′,δ∗

cannot be above a∗. This contradicts the definition of K(a,AC|r′). That is, the threshold

must be decreasing whenever a > ē. Given that the family {ur} is strictly ordered by

concavity, the threshold must be strictly decreasing. The proof that the threshold is

strictly increasing whenever a < ē is analogous and thus omitted.

Consider now 0 < a < ē < a < 1 and denote by δē the value of δ that makes indifferent

all the alternatives when r = 0. From the previous reasoning, whenever r > 0, K(a,AC|r)

(resp., K(a,AC|r)) is above (resp., below) δē. Thus, for any given δ > δē (resp., δ < δē), a

dominating change in the conditional distribution of r creates an increase in the conditional

mass of the set of values of r that lie above the inverse of threshold K(a,AC|r) (resp.,

K(a,AC|r)). Claim 2b then follows.

We now prove Claim 3a. We know that the choice belongs to [0, ē] if and only if

δ > K(ē, AC|r). We can reproduce the analysis of Proposition 2 for the case of expansions

in the conditional distribution of δ, and thus, Claim 3a follows. To show Claim 3b,

consider any sequence of values {an}, with an > ē, such that limn a
n = ē. We know that

the choice belongs to [0, an] if and only if δ > K(an, AC|r). Given that for every an the

threshold is strictly decreasing, we can invert these maps and then reproduce the analysis

of Proposition 2 for the case of expansions in the conditional distribution of r, and thus,

Claim 3b follows. ■

30Notice that we are maintaining δ∗ constant because this value is part of the definition of the lotteries.
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Figures 37

Figure 1. Risk and Time Preferences at the Individual Level AHLR

Risk Aversion Coefficient: µr Discount Rate: µδ

NOTES. The figure shows the estimated average risk aversion coefficient µr (first column) and annual discount rate

µδ (second column) for each individual in the double-multiple price list data from Andersen et al. (2008). Each dot

shows a subject’s estimate using the corresponding structural model and compares it against the semi-parametric
estimate based on the adjacent menus in each risk/time task where the subject’s choice switched from the safe/early

lottery to the risky/delayed lottery. Subjects who did not switch choices in at least one of the four risk tasks are
shown as a triangle. Subjects who did not switch choices in at least one of the six time tasks are shown as a square.

Estimates are truncated to fit the ranges in the plots.
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Figure 2. Volatility of Risk and Time Preferences at the Individual Level: AHLR

Risk Aversion Coefficient: σr Discount Rate: σδ

NOTES. The figure shows the estimated standard deviation of the risk aversion coefficient σr (first column) and

annual discount rate σδ (second column) for each individual in the double-multiple price list data from Andersen et

al. (2008). Each dot shows a subject’s estimate using the corresponding structural model and compares it against
the semi-parametric estimate based on the adjacent menus in each risk/time task where the subject’s choice switched

from the safe/early lottery to the risky/delayed lottery. Subjects who did not switch choices in at least one of the
four risk tasks are shown as a triangle. Subjects who did not switch choices in at least one of the six time tasks are

shown as a square. Estimates are truncated to fit the ranges in the plots.
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Figure 3. Predicted and Observed Choice: AS
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NOTES. The figure shows the observed and predicted frequency of choosing each token share a in the convex menu

dataset of Andreoni and Sprenger (2012b). The white bars show the frequency observed in the data. The gray bars show

the frequency predicted by the corresponding model using the population estimates reported in Table 3. The left column
shows the results for the entire sample, while the right column shows the results for a convex menu with payoffs of 20

USD delivered in 7 and 35 days with probability 0.4 and 0.5, respectively.



40 Figures

Figure 4. Predicted and Observed Choice By Risk Condition: AS

Task 1: (pt, pt+k) = (1, 1) Task 4: (pt, pt+k) = (0.5, 0.5)

Task 2: (pt, pt+k) = (1, 0.8) Task 5: (pt, pt+k) = (0.5, 0.4)

Task 3: (pt, pt+k) = (0.8, 1) Task 6: (pt, pt+k) = (0.4, 0.5)

NOTES. The figure shows the observed and predicted frequency of choosing each token share a in the convex menu
dataset of Andreoni and Sprenger (2012b). The white bars show the frequency observed in the data. The gray bars

show the frequency predicted by the R-DEU model using the population estimates reported in Table 3.
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Table 1. Aggregate Risk and Time Preferences: AHLR

R-DEU LUCE WILCOX SPE

µr
0.781

[0.053]

0.726

[0.058]

0.777

[0.045]

0.715

−

σr
0.895

[0.049]

0.086

[0.016]

0.220

[0.011]

0.833

−

µδ
0.125

[0.008]

0.101

[0.009]

0.095

[0.007]

0.138

−

σδ
0.125

[0.010]

0.020

[0.006]

0.222

[0.017]

0.165

−

ρ −0.958

[0.016]

−
−

−
−

−0.761

−

Log-Like L
Risk Menus −0.450 −0.448 −0.445 −
Time Menus −0.495 −0.554 −0.557 −
All Menus −0.481 −0.521 −0.522 −

NOTES.- The table reports estimated risk aversion and discount rates at the aggregate level
using different models and data from the double multiple price list design in Andersen et al.

(2008). The first three columns show the maximum likelihood estimates from the three structural

models described in the main text. The last column shows the population mean and standard
deviation of the semi-parametric estimates of r and δ obtained from the adjacent menus in each
risk/time task where the choice of each individual in the sample switched from the safe/early

lottery to the risky/delayed lottery. Standard errors for each MLE are shown in brackets and
are clustered at the individual level.
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Table 2. Individual Risk and Time Preferences: AHLR

Risk Aversion Coefficient µr Discount Rate µδ

Moment R-DEU LUCE WILCOX SPE R-DEU LUCE WILCOX SPE

Mean 0.698 −4.875 −0.305 0.715 0.133 1.525 2.634 0.138
Std. Dev. 0.629 45.04 19.59 0.608 0.167 34.412 20.31 0.111

Min −1.886 −458.4 −276.7 −0.964 −0.443 −315.6 −34.03 0.006

10th pctl. −0.122 −0.052 −0.054 −0.064 0.018 0.040 0.001 0.027
25th pctl. 0.366 0.333 0.389 0.285 0.042 0.074 0.024 0.055

Median 0.708 0.656 0.782 0.714 0.098 0.115 0.067 0.110

75th pctl. 1.125 0.842 1.271 1.128 0.182 0.184 0.152 0.194
90th pctl. 1.507 0.894 2.782 1.557 0.315 0.303 0.273 0.308

Max 2.139 0.977 8.123 2.026 1.658 344.4 153.9 0.555

Correlation
with SPE
Pearson’ r 0.961 0.079 −0.111 1 0.814 0.029 0.023 1
Kendall’s τ 0.899 0.597 0.690 1 0.836 0.544 0.591 1

Spearman’s ρ 0.980 0.728 0.756 1 0.943 0.702 0.686 1

NOTES.- The table reports summary statistics of the estimated average risk aversion (µr) and discount rates (µδ)

across individuals using data from the double multiple price list design from Andersen et al. (2008). Each column
corresponds to a model described in the main text. The last three rows report, respectively, the Pearson correlation

coefficient, the Kendall rank correlation coefficient, and the Spearman rank correlation coefficient between subjects’

estimates using a structural model and the semi-parametric estimates obtained from the adjacent menus in each
risk/time task where the choice of the individual switched from the safe/early lottery to the risky/delayed lottery.
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Table 3. Volatility of Individual Risk and Time Preferences: AHLR

Risk Aversion Coefficient σr Discount Rate σδ

Moment R-DEU LUCE WILCOX SPE R-DEU LUCE WILCOX SPE

Mean 0.473 19.56 5021 0.539 0.099 0.510 19802 0.091
Std. Dev. 0.568 208.1 70187 0.374 0.247 6.373 139319 0.086

Min 0.001 0.001 0.001 0.056 0.001 0.002 0.001 0.003

10th pctl. 0.050 0.006 0.002 0.172 0.005 0.002 0.001 0.017
25th pctl. 0.190 0.021 0.055 0.273 0.015 0.003 0.005 0.029

Median 0.362 0.051 0.104 0.446 0.042 0.004 0.041 0.061

75th pctl. 0.554 0.112 0.189 0.710 0.107 0.017 0.120 0.120
90th pctl. 0.903 0.211 0.407 1.028 0.211 0.042 0.241 0.207

Max 5.963 2895 1e6 2.219 3.127 90.59 1e6 0.541

Correlation
with SPE
Pearson’ r 0.805 −0.055 0.014 1 0.591 0.126 0.136 1
Kendall’s τ 0.681 0.471 0.635 1 0.520 0.366 0.310 1

Spearman’s ρ 0.850 0.644 0.778 1 0.702 0.504 0.421 1

NOTES.- The table reports summary statistics of the estimated standard deviation of risk aversion (σr) and discount

rates (σδ) across individuals using data from the double multiple price list design from Andersen et al. (2008). Each
column corresponds to a model described in the main text. The last three rows report, respectively, the Pearson

correlation coefficient, the Kendall rank correlation coefficient, and the Spearman rank correlation coefficient between

subjects’ estimates using a structural model and the semi-parametric estimates obtained from the adjacent menus in
each risk/time task where the choice of the individual switched from the safe/early lottery to the risky/delayed lottery.
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Table 4. Aggregate Risk and Time Preferences: AS

R-DEU
iid-additive

RUM
NLS

µr
0.207
[0.062]

−0.133
[0.020]

0.317
[0.017]

σr
0.752
[0.079]

−
−

−
−

µδ
0.339
[0.108]

0.571
[0.081]

0.262
[0.079]

σδ
1.805

[0.124]

−
−

−
−

ρ −0.164

[0.053]

−
−

−
−

L −2.108 −2.519 −
NOTES.- The table reports the maximum-likelihood estimates of risk

aversion and discounting at the aggregate level using data of convex

menus from the experimental design in Andreoni and Sprenger (2012).
Each column reports the estimates for the corresponding structural

model discussed in the main text. Standard errors for all estimates,
shown in brackets, are clustered at the individual level.
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