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Appendix A. Identification Proofs

Proof of Proposition 3: We start by showing that θr ≡ (µr, σr) is identified. Assume,

on the contrary, that this is not the case: there exist θ′r and θ∗r in Θr such that θ′r ̸= θ∗r

and Pθ′ (1R, AR) = Pθ∗ (1R, AR). Using Proposition 1, we can write this equality as:

Pθ′r (r ≤ K (AR)) = Φ

(
K (AR)− µ′

r

σ′
r

)
= Φ

(
K (AR)− µ∗

r

σ∗
r

)
= Pθ∗r (r ≤ K (AR)) .

Since the Φ (·) is a strictly monotonic function, the last equality implies that:

(A.1) −µ∗
r

σ∗
r

+
1

σ∗
r

K (AR) = −µ′
r

σ′
r

+
1

σ′
r

K (AR) ,

for every menu AR. Now, since θ′r ̸= θ∗r , there are three possible cases: µ′
r ̸= µ∗

r and

σ′
r = σ∗

r ; µ
′
r = µ∗

t and σ′
r ̸= σ∗

r ; and µ′
r ≠ µ∗

r and σ′
r ̸= σ∗

r . In the first case, equation

(A.1) implies µ′
r = µ∗

r, leading to a contradiction. Consider now the second and third

cases where σ′
r ̸= σ∗

r . Evaluating (A.1) for AR,a and AR,b and combining the resulting

expressions yields:

(A.2)

(
1

σ∗
r

− 1

σ′
r

)(
K
(
AR

b

)
−K

(
AR

a

))
= 0.

Since K (AR,a) ̸= K (AR,b) by assumption (a), it must be the case that σ′
r = σ∗

r , arriving

to a contradiction. We thus conclude that θr is identified. The next step is to show

that θδ ≡ (µδ, σδ, ρ) is identified. Fix (µr, σr) and assume, on the contrary, that θδ is not

identified: there exist θ′δ and θ∗δ in Θ such that θ′δ ̸= θ∗δ and Pθ′δ
(0T , AT ) = Pθ∗δ

(0T , AT ).

Using Proposition 2, the equality of probabilities implies:∫ ∞

−∞

{
Φ

(
K (AT |r)− µ′

δ|r

σ′
δ|r

)
− Φ

(
K (AT |r)− µ∗

δ|r

σ∗
δ|r

)}
ϕ

(
r − µr

σr

)
dr = 0,

with µδ|r = µδ + ρσδv (r), σδ|r = σδ

√
1− ρ2, and ν (r) ≡ r−µr

σr
. The term in brackets in

the previous expression is bounded in [−1, 1]. By the continuity and monotonicity of ϕ (·)

and Φ (·), there exists rm ∈ R for each one of the menus {AT ,c, AT ,d, AT ,e} such that:

(A.3) − µ′
δ

σ′
δ|r

− α′v (rm) +
1

σ′
δ|r

K (AT ,m|rm) = − µ∗
δ

σ∗
δ|r

− α∗v (rm) +
1

σ∗
δ|r

K (AT ,m|rm) ,
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where α ≡ ρ/
√
1− ρ2 and we use the fact that σδ|r is independent of rm. Now, any of

the three conditions in Assumption (b) implies K (AT ,c|r) ≠ K (AT ,d|r) ≠ K (AT ,e|r) ̸=

K (AT ,c|r) for any r ∈ R. Using this result and the Implicit Function Theorem, we

conclude that that rc ≠ rd ̸= re ̸= rc. Setting m = c in (A.3) and subtracting the

corresponding expression for m = d, we get:

(A.4) [α′ − α∗] (v (rc)− v (rd)) +

[
1

σ′
δ|r

− 1

σ∗
δ|r

]
(K (AT ,c|rc)−K (AT ,d|rd)) = 0.

Repeating this procedure for menus AT ,c and AT ,e, we get:

(A.5) [α′ − α∗] (v (rc)− v (re)) +

[
1

σ′
δ|r

− 1

σ∗
δ|r

]
(K (AT ,c|rc)−K (AT ,e|re)) = 0.

Using (A.5) to replace
[
1/σ′

δ|r − 1/σ∗
δ|r

]
in (A.4), we get:

(A.6) [α′ − α∗] [rc − rd]

[
1−

(
rc − re
rc − rd

)(
K (AT ,c|rc)−K (AT ,d|rd)
K (AT ,c|rc)−K (AT ,e|re)

)]
= 0.

Since K (AT ,c|rc) ̸= K (AT ,d|rd) ̸= K (AT ,e|re) ̸= K (AT ,c|rc), equation (A.6) implies

that α′ = α∗, which in turn implies ρ′ = ρ∗. This result and equation (A.5) implies that

σ′
δ|r = σ∗

δ|r, so that σ′
δ = σ∗

δ . Using equation (A.3), we conclude that µ′
δ = µ∗

δ , arriving to

a contradiction. This concludes the proof. ■

Proof of Proposition 4: To simplify the presentation of the result and provide neat

intuitions, we use two relatively mild assumptions: (i) the probability of the event

{r > 1, δ < 0} is small and (ii) there are two time menus AT1 and AT2 with the same

payouts where the probabilities of selecting options 0T1 and 1T2 are greater than 1
2
. To

motivate (i), notice that δ < 0 already corresponds to the rare event in which the individual

has a strict preference for the future, and we are compounding this with the extra effect

of a more-than-logarithmic curvature. To motivate (ii), notice that we can make the

differences in the timings as small or as large as desired.

Now, from Proposition 1 we know that Pf(0R, AR) = 1 − F r(K(AR)), which in the

parametric version reads as Pf(0R, AR) = 1− Φ(K(AR)−µr

σr
). Fix any value of p ∈ (0, 1),

three payouts x0
1 > x0

2 > x1
2 > 0, and consider risk menus that vary only on the payout
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x1
1. The thresholds of these menus are strictly increasing in x1

1 and form a bijection

with the real numbers. Hence, there exist two menus AR1 and AR2 such that the choice

probabilities for options 0R1 and 0R2 are equal to 1− Φ(0) and 1− Φ(1), respectively. It

must then be µr = K(AR1) and σr = K(AR2)− µr = K(AR2)−K(AR1).

We now discuss time menus and, by using sufficiently large payouts in all our arguments,

we can assume w.l.o.g. that behavior corresponds to the case ω → 0. In this limit case

the conditional threshold map becomes piece-wise linear: (a) when r < 1, K(AT |r) =
log x1

x0

t1−t0
(1− r) ≡ K(AT )(1− r) > 0, where K(AT ) is a menu-dependent constant, and (b)

when r ≥ 1, K(AT |r) becomes null. Hence, the probability of choosing 0T corresponds

to the probability that δ lies above min{0, K(AT )(1 − r)} and, given our assumption

(i), this can be approximated by the probability that δ lies above K(AT )(1 − r). This

is the probability that the random variable K(AT )(1 − r) − δ lies below zero. Given

normality this random variable is also normal with mean −µδ −K(AT )µr +K(AT ) and

standard deviation
√

K2(AT )σ2
r + σ2

δ + 2ρK(AT )σrσδ. Thus the choice probability of 0T

is approximately Φ
( µδ+K(AT )µr−K(AT )√

K2(AT )σ2
r+σ2

δ+2ρK(AT )σrσδ

)
.

By assumption (ii) there exist two time menus AT1 and AT2 with the same payouts

x0, x1 such that the choice probabilities of 0T are above and below Φ(0) = 1
2
, respectively.

Due to the stationarity of DEU, we can assume w.l.o.g. that the earlier payout takes

place in the present in both cases. By continuity there must exist a unique t, and hence

a menu AT3 = {([1;x0], 0), ([1;x1], t)} such that the choice probability of option 0T3 is

exactly Φ(0). Hence, µδ = K(AT3)(1 − µr) = K(AT3)(1 − K(AR1)). Second, consider

any sequence of time problems {AT n} such that limnK(AT n) = 0. Denote by q the

limit of the choice probabilities of option 0T n . We know that q = Φ(µδ

σδ
) and, hence,

it must be σδ = µδ

Φ−1(q)
=

K(AT3 )(1−K(AR1
))

Φ−1(q)
. Finally, by fixing again any three parame-

ters in a time menu and varying the fourth, we know that there exists a unique time

menu AT4 in such a family for which K(AT4) =
σδ

σr
.1 Denote by q′ the choice probabil-

ity of option 0T4 . It must then be q′ = Φ(
µr−1
σr

+
µδ
σδ√

2(1+ρ)
). Notice that the right-hand side

map is either strictly increasing or strictly decreasing in ρ, which allows to obtain ρ:

1This is in general different to AT3
. Otherwise, notice that the mapping

Φ
( µδ+K(AT )µr−K(AT )√

K2(AT )σ2
r+σ2

δ+2ρK(AT )σrσδ

)
is strictly monotone in ρ, and hence the parameter can be recov-

ered using some other time menu.
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ρ = 1
2

[ µr−1
σr

+
µδ
σδ

Φ−1(q′)

]2
− 1 = 1

2

[ K(AR1
)−1

K(AR2
)−K(AR1

)
+Φ−1(q)

Φ−1(q′)

]2
− 1. This concludes the proof. ■

Proof of Proposition 6: We start by showing that θr ≡ (µr, σr) is identified. Assume,

on the contrary, that this is not the case: there exists θ′ and θ∗ in Θ with θ′r ̸= θ∗r such that

the distribution of the data is the same under both parameters. Let log R̃ ≡ log x1

x0 +log p1

p0

and k ≡ t1 − t0. Note that, under the assumption that x0/ω → 0 and x1/ω → 0, the

probability of corner allocations, conditional on r > 0, converges to zero. Consequently,

the probability of observing corner allocations a ∈ {0, 1} is given by Pθ′ (a ∈ {0, 1} , AC) =

Pθ′ (r ≤ 0) = Φ (−µ′
r/σ

′
r) which, by the assumption of no-identification, is equal to

Φ (−µ∗
r/σ

∗
r). It follows that µ′

r/σ
′
r = µ∗

r/σ
∗
r . Consequently, both µ′

r ≠ µ∗
r and σ′

r ̸= σ∗
r

must hold. Otherwise, θ′r = θ∗r . Now, using the first order condition of the problem, we

have:

Eθ′

[
log

(
ax1

m + ω

(1− a)x0
m + ω

)
|r > 0

]
= −Eθ′

[
δ

r
|r > 0

]
km + Eθ′

[
1

r
|r > 0

]
log R̃m,

for any menu AC,m. Combining the corresponding expressions for AC,a and AC,b, and using

the assumption that ka = kb, we get:

(A.7) Eθ′ [∆c|r > 0] = Eθ′

[
1

r
|r > 0

](
log R̃a − log R̃b

)
,

with

∆c ≡ log

(
ax1

a + ω

(1− a)x0
a + ω

)
− log

(
ax1

b + ω

(1− a)x0
b + ω

)
.

Since the model is not identified, it must also be the case that Eθ′ [∆c|r > 0] =

Eθ∗ [∆c|r > 0]. From equation (A.7), it follows that:(
Eθ′

[
1

r
|r > 0

]
− Eθ∗

[
1

r
|r > 0

])(
log R̃a − log R̃b

)
= 0.

Since R̃a ̸= R̃b by assumption, the previous expression implies that Eθ′
[
1
r
|r > 0

]
=

Eθ∗
[
1
r
|r > 0

]
. Using the fact that r follows a normal distribution, we can write Eθ′

[
1
r
|r > 0

]
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as:

Eθ′

[
1

r
|r > 0

]
=

1

1− Φ (−µ′
r/σ

′
r)

∫ ∞

0

1

x

(
1

σ′
r

)
ϕ

(
x− µ′

r

σ′
r

)
=

1

Φ (µ′
r/σ

′
r)σ

′
r

∫ ∞

0

1

z
ϕ (z − µ′

r/σ
′
r) dz,

where the second line uses the change of variable z ≡ x/σ and the symmetry of the Normal

CDF . Finally, for θ∗ we must also have:

Eθ∗

[
1

r
|r > 0

]
=

1

Φ (µ∗
r/σ

∗
r)σ

∗
r

∫ ∞

0

1

z
ϕ (z − µ∗

r/σ
∗
r) dz.

Since Eθ′
[
1
r
|r > 0

]
= Eθ∗

[
1
r
|r > 0

]
and µ′

r/σ
′
r = µ∗

r/σ
∗
r , the previous two expressions

imply that σ′
r = σ∗

r , arriving to a contradiction. Hence, θr is identified.

The next step is to show that θδ ≡ (µδ, σδ, ρ) are identified. Fix θr ≡ (µr, σr) and

assume, on the contrary, that θδ is not identified: there exists θ′δ and θ∗δ in Θ such that

θ′δ ̸= θ∗δ and Pθ′δ
(a = 0, AC) = Pθ∗δ

(a = 0, AC). From Proposition 5, this equality implies:

Pθ′δ
(a = 0, AC|r ≤ 0) = Pθ′δ

(K(0, AC|r) ≤ δ|r ≤ 0)Pθr (r ≤ 0), which is equal to

Pθ∗δ
(K(0, AC|r) ≤ δ|r ≤ 0)Pθr (r ≤ 0). This equality implies:

∫ 0

−∞

{
Φ

(
K (0, AC|r)− µ′

δ|r

σ′
δ|r

)
− Φ

(
K (0, AC|r)− µ∗

δ|r

σ∗
δ|r

)}
dr = 0,

At this stage, identification of θδ from convex menus is analogous to its identification

using time menus. We can thus use assumption (b) and the same steps used in the second

part of the proof of Proposition 3 to arrive to a contradiction. ■

Proof of Proposition 7: We start discussing menus in which t1 → t0, that can be seen

as risk problems only. In these menus, the choice is determined by the optimization of

the objective function p0 (ω+(1−a)x0)1−r−ω1−r

1−r
+ p1 (ω+ax1)1−r−ω1−r

1−r
. Whenever r ≤ 0, there

are two cases. First, if p1x1 ≥ p0x0 the choice is a = 1. Second, if p1x1 < p0x0, there is

r∗ < 0 such that whenever r ≤ r∗ the choice is a = 1 and whenever r > r∗ the choice

is a = 0. Now, whenever r > 0, the solution is interior and choices form a continuous

mapping from the corner with larger expectation towards the point ē = x0

x0+x1 , which is

the limit of choices when r → ∞. Thus, we can consider one such problem, say, one
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such that p1x1 > p0x0. The observed mass of alternative a = 1, that we denote by q1,

must be equal to Φ(0−µr

σr
). Now, let a be any value in (ē, 1) and denote by ra the value

above which the optimal choice falls below a. Denote by q′ the observed choice probability

below a, that must be equal to 1− Φ( ra−µr

σr
). This allows to obtain parameters µr and σr:

σr =
ra

1−Φ−1(q1)−Φ−1(q′)
and µr = −σrΦ

−1(q1) = − raΦ−1(q1)
1−Φ−1(q1)−Φ−1(q′)

The rest of the parameters can be identified as follows. As commented in the proof

of Proposition 4, for any given ω, the use of large payouts is equivalent to use the case

ω → 0 and, in what follows, we assume large payouts. Whenever p1 → p0, the probability

of selecting options below 1
2
is the probability that δ is above K(AT )(1− r).2 One can

then reproduce the proof of Proposition 4 replacing the mass of 0T for the cumulative

mass below 1
2
. ■

2Note that unlike in the case of Proposition 4, the probability obtained here is exact.
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Appendix B. Hybrid Menus

In a hybrid menu, each of the two alternatives corresponds to a two state-contingent

lottery, with the safer lottery awarded earlier in time. Formally, AH = {0H, 1H} with

0H = ([p, 1 − p;x0
1, x

0
2], t

0) and 1H = ([p, 1 − p;x1
1, x

1
2], t

1) such that x1
1 > x0

1 > x0
2 > x1

2,

p ∈ (0, 1) and t0 < t1. The analysis of hybrid menus is analogous to that of time menus

by conditioning again on parameter r. For any given hybrid menu AT and any value of r,

there exists a menu-dependent constant K(AH|r) ∈ R such that alternative 0H is selected

if and only if δ ≥ K(AH|r).3 As a result, the choice probability of alternative 0H is:

Pf (0H, AH) = 1−
∫
r

Fδ|rK(AH|r)f r(r)dr.

The effect of shifts and spreads of δ are trivially understood from this structure, by

applying the logic of Proposition 2. Understanding the effect of r requires some caution,

since the ratio of expected utilities is an object that may be difficult to tame. Fortunately,

it can be seen that for standard families of monetary utilities (e.g., CRRA and CARA),

the threshold K(AH|r) is decreasing in r as long as δ > 0.

3It is easy to see that K(AH|r) = 1
t1−t2 log

[
pur(x

0
1)+(1−p)ur(x

0
2)

pur(x1
1)+(1−p)ur(x1

2)

]
.
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Appendix C. Numerical Evaluation of Choice Probabilities

DMPL. Given a value for parameter vector θ ∈ Θ, computation of the log-likelihood

defined in Section 4 requires computing Pθ (0m, Am) for each menu Am in the dataset O.

In general, this requires evaluating a double integral numerically. Given the structure

of the R-DEU model, this can be done efficiently using Quasi-Monte Carlo (QMC)

methods: begin by discretizing the support of fθ it in NQMC nodes {rk, δk}
NQMC

k=1 using

low-discrepancy sequences. Let I (0m, Am|rk, δk) denote an indicator function that takes

value of one when DEUrk,δk (0m) > DEUrk,δk (1m), and zero otherwise. For large enouh

NQMC , we have

Pθ (0m, Am) ≈
V

NQMC

NQMC∑
k=1

I (0m, Am|rk, δk) fθ (rk, δk) ,

where V ≡
∫
r

∫
δ
drdδ = (r − r)

(
δ − δ

)
is a normalization constant. We can control the

accuracy of the approximation by increasing the number of nodes NQMC . Importantly,

the indicator function I (0m, Am|rk, δk) is independent of θ. It follows that, to compute

the maximum-likelihood estimator of θ, this indicator function needs to be computed only

once before starting the search of the maximizer, reducing dramatically the estimation

time.

We can also use the results in the paper, together with the assumption that f follows a

bivariate normal distribution, to improve the estimation algorithm further. For risk menus,

Proposition 1 implies Pθ (0m, AR,m) = 1 − Φ ((K (AR,m)− µr)/σr). Computation of

K (AR,m) requires solving a non-linear equation numerically for each risk menu. However,

these thresholds are independent of θ so we only need to compute them once before

estimation. For time menus, Proposition 2 simplifies the double integral characterizing

Pθ (0m, AT ,m) into the following following single-valued integral:

Pθ (0m, AT ,m) = 1−
∫
r

Φ

(
K (AT ,m|r)− µδ|r

σδ|r

)
ϕ

(
r − µr

σr

)
dr,

with µδ|r ≡ µδ + ρσδ

σr
(r − µr) and σδ|r ≡ σδ

√
1− ρ2. This simpler integral can also be

evaluated numerically using QMC methods, as discussed before.
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Convex Budgets. Computation of the log-likelihood function with convex budgets,

as defined in Section 6, is computationally more demanding as it requires evaluating

Pθ (a ∈ αs, Am) for each of the M menus in the dataset and each of the S options in which

the choice set is discretized. As in the iid-additive RUM, we can proceed by rounding

each observed allocation a to the midpoint of the option αs for which a ∈ αs. This

results in S possible observed allocations in the data: α1 = 0, α2 = (a2 + a3) /2, . . .,

αS−1 = (aS−1 + aS) /2 and αS = 1. Let I (α,Am|rk, δk) denote an indicator function that

takes value of 1 when DEUrk,δk (α) ≥ DEUrk,δk (α
∗) in menu Am for all α∗ ∈ {α1, . . . , αS},

and zero otherwise. We can then use the numerical approximation Pθ (a ∈ αs, Am) ≈

(V/NQMC)
∑NQMC

k=1 I (α,Am|rk, δk) fθ (rk, δk). As in the DMPL case, the indicator function

I (α,Am|rk, δk) is independent of θ and can be pre-computed before maximization of the

log-likelihood function. This method allows for flexible specifications of f and can be

easily extended to more general models, as illustrated in Appendix D.

Alternatively, we can exploit the results from Proposition 5 and the assumption that f

is normal to compute Pθ ([as, as+1] , Am) as the single-variable integral:∫
r

[
Φ

(
K (As,C|r)− µδ|r

σδ|r

)
− Φ

(
K (As+1,C|r)− µδ|r

σδ|r

)]
ϕ

(
r − µr

σr

)
dr,

where the thresholds K (As,C|r) are defined in Section 5 and are independent of θ.
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Appendix D. Extensions

The methods introduced in this paper can be extended to allow for additional behavioral

features and alternative distributions for the random parameters. We illustrate this in this

section using convex budget data from the experimental design in Andreoni and Sprenger

(2012a). This dataset is similar to the one used in Section 5 and features 97 subjects

facing 45 convex menus with certain payoffs. The main difference with the data used for

the baseline analysis in the main text is that some of the menus feature payoffs in the

present, which allows estimation of present bias in discounting.

Table 1 summarizes the results of this exercise. To make comparison across models

with different distributional assumptions feasible, we report the median and inter-quantile

range (IQR) of the estimated distributions. The second column of Table 1 summarizes

the baseline estimates obtained using the R-DEU model following the procedure used in

Section 6. The estimated curvature of the utility function is statistically zero, similar to

the results obtained by Andreoni and Sprenger (2012b), which could be due to the lack of

variation in payoff probabilities in this dataset, indicating that the curvature captures

only intertemporal substitution. The estimated median of the annual discount rate is

small and statistically close to zero. Nevertheless, the model estimates a large degree of

heterogeneity in both parameters.

The third column of Table 1 shows the results using Quasi-Monte Carlo (QMC) methods,

as discussed in Section C of this Appendix. The results are virtually identical to those

obtained using the baseline algorithm developed in the paper. Nevertheless, it takes

four times longer to estimate the model using QMC methods, confirming the benefits

of exploiting the economic structure of the problem. Despite this, the QMC method is

useful for estimating the model with alternative distributions and behavioral features, as

discussed below.

The fourth column of Table 1 shows the results for a “constrained” version of the

RDE model where δ follows a normal distribution truncated at zero, ruling out the

possibility of preference for the future. In this case, we use a Gaussian copula to allow for

correlation between r and δ. The estimated median of the annual discount rate is larger

and statistically different from zero. The median curvature of the utility function remains
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Table 1. Estimated Risk and Time Preferences in Andreoni and
Sprenger (2012a)

R-DEU Hyperbolic Discounting
Baseline QMC Constrained Unconstrained Constrained

Median (r)
−0.051

[0.084]

−0.050

[0.080]

−0.037

[0.039]

−0.039

[0.071]

−0.038

[0.038]

IQR (r)
0.718

[0.166]

0.715

[0.152]

0.347

[0.072]

0.665

[0.122]

0.348

[0.070]

Median (δ)
0.043

[0.157]

0.037

[0.151]

0.504

[0.058]

0.072

[0.148]

0.490

[0.052]

IQR (δ)
2.317

[0.335]

2.310

[0.305]

0.784

[0.087]

2.217

[0.271]

0.764

[0.079]

Median (β) − − − 0.991

[0.004]

0.898

[0.008]

IQR (β) − − − 0.004

[0.005]

0.247

[0.056]

Cor (r, δ)
−0.306

[0.071]

−0.302

[0.068]

0.020

[0.056]

−0.284

[0.067]

0.017

[0.060]

Cor (r, β) − − − −0.002

[2.605]

−0.078

[0.459]

Cor (δ, β) − − − −0.001
[0.479]

0.134
[0.356]

L −1.709 −1.709 −1.835 −1.709 −1.833

NOTES.- The table reports estimated moments of the distributions of risk aversion (r),
discounting (δ), and present bias (β) estimated at the population level. The second
column reports the results obtained using the R-DEU model with same methodology

and assumptions as in Section 6. The third column shows the results using Quasi-Monte
Carlo methods (QMC), as discussed in Appendix C. The fourth column shows the results
using QMC and assumes that δ follows a normal distribution truncated at zero. The
fourth column shows the results for a model extended to allow for present bias under the

assumption that the (r, δ, β) follow a multivariate normal distribution. The last column
shows the results assuming that δ follows a normal distribution truncated at zero and β a
beta distribution. Standard errors for each MLE are shown in brackets and are clustered

at the individual level.

close to zero, and the IQR of both parameters is now lower. As expected, restricting the

domain of δ reduces the fit to the data, as reflected in the resulting log-likelihood.

The last two columns of Table 1 show the results for the model extended to allow

present bias in discounting so that the discount factor in the model is βe−δ when t0 = 0,

and e−δ otherwise. The first of the two columns shows the results for an “unconstrained”

model that assumes parameters r, δ and β follow a multivariate normal distribution with

an arbitrary correlation matrix. The results in this case are very similar to those obtained

in the R-DEU model, indicating a low degree of present bias. The second column shows

the results for a “constrained” model where r follows a normal distribution, δ follows a

normal distribution truncated at zero, and β follows a beta distribution with support on
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the unit interval. The estimated distributions of r and δ are similar to those obtained for

the constrained R-DEU model, but now the median present bias is statistically different

from 1. Nevertheless, the improvement in fit is relatively low compared to the constrained

R-DEU model.
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Appendix E. Baseline Wealth

We now briefly comment on the role of ω with CRRA monetary utilities. It is immediate

to see that in risk menus AR such that K(AR) ̸= 0, K(AR) is strictly increasing (resp.,

decreasing) in ω whenever K(AR) > 0 (resp., K(AR) < 0).4 Consequently, ceteris paribus,

the alternative with larger expected value will be chosen more often. In time menus AT ,

every threshold K(AT |r) converges monotonically to the constant K(AT |0) as ω increases.

The conditional behavior of every r becomes more aligned with the conditional choices

of r = 0. That is, ceteris paribus, the more risk-averse (resp., lover) individuals will

choose more often the present (resp., future) option. Similarly, in convex menus AC, every

threshold map K(a,AC|r) converges monotonically to the constant map K(a,AC|0) as ω

increases. The conditional behavior of every r becomes more aligned with the conditional

choices of r = 0 (with interior solutions vanishing).

Since in actual practice it is often assumed zero levels of background wealth, it is

interesting to discuss theoretically the limit model when the baseline wealth tends to zero.

From the previous discussion, we know that this limit case would create the best conditions

for parameter r kicking in all menus. Interestingly, for the case of time menus AT , as

discussed in the proof of Proposition 3, the conditional threshold map becomes piece-wise

linear: (a) when r < 1, K(AT |r) =
log x1

x0

t1−t0
(1 − r) ≡ K(AT )(1 − r) > 0, where K(AT ) is

a menu-dependent constant, and (b) when r ≥ 1, K(AT |r) becomes null. Hence, for

parameters (r, δ), with r < 1, the earlier option 0T is preferred to the later option for such

parameters if and only if δ
1−r

≥ K(AT ). That is, the expression δ
1−r

represents a simple

correction of δ based on the risk parameter r that captures completely time considerations.

In other words, the behavior of DEUr,δ is equivalent to the behavior of DEU0, δ
1−r

, and

if the analyst is willing to entertain the idea that risk aversion above 1 is not crucial or

that risk aversion and delay aversion are somewhat independent phenomena for standard

values, independent distributions of r and δ
1−r

can be considered. Importantly, behavior

for r ≥ 1 becomes extreme when wealth is negligible, as alternative 0T is always preferred.

To see the role of baseline wealth in the empirical applications studied in the paper,

Table 2 compares the estimates under the baseline choice of ω with those obtained by

4In the degenerate case where the expected values of both lotteries coincide, we obviously have
K(AR) = 0 for all levels of ω.
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Table 2. Estimated Risk and Time Prefer-
ences when ω ≈ 0

DMPL-AHLR CB-AS
Baseline ω ≈ 0 Baseline ω ≈ 0

µr
0.781

[0.053]

0.681

[0.032]

0.207

[0.062]

0.095

[0.045]

σr
0.895

[0.049]

0.768

[0.039]

0.752

[0.079]

0.562

[0.054]

µδ
0.125

[0.008]

0.102

[0.007]

0.339

[0.108]

0.383

[0.110]

σδ
0.125

[0.010]

0.116

[0.007]

1.805

[0.124]

1.821

[0.125]

ρ
−0.958

[0.016]

−0.999

[0.001]

−0.164

[0.053]

−0.202

[0.052]

NOTES.- The table reports the risk aversion coefficient
and annual discount rate at the population level estimated
by the R-DEU model under two different assumptions

about the value of integrated wealth ω.

setting ω to a positive value close to zero. This exercise confirms the previous theoretical

discussion: the estimated average and standard deviation of risk aversion falls with the

value of ω, and the correlation between r and δ increases. Nevertheless, these changes are

quantitativelly small. Notice also that the estimated marginal distribution of δ remains

practically unchanged after across values of ω.
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Appendix F. Example of Risk and Time Tasks in AHLR

Table 3. Example of a Risk Task in AHLR

Lottery A Lottery B

Menu p Prize p Prize p Prize p Prize

1 0.1 2000 0.9 1600 0.1 3850 0.9 100

2 0.1 2000 0.9 1600 0.1 3850 0.9 100

3 0.1 2000 0.9 1600 0.1 3850 0.9 100

4 0.1 2000 0.9 1600 0.1 3850 0.9 100

5 0.1 2000 0.9 1600 0.1 3850 0.9 100

6 0.1 2000 0.9 1600 0.1 3850 0.9 100

7 0.1 2000 0.9 1600 0.1 3850 0.9 100

8 0.1 2000 0.9 1600 0.1 3850 0.9 100

9 0.1 2000 0.9 1600 0.1 3850 0.9 100

10 0.1 2000 0.9 1600 0.1 3850 0.9 100

NOTES.- Example of a risk task in Andersen et al. (2008). All prizes
are displayed in DKK.

Table 4. Example of a Time Task in AHLR

Payment Option A Payment Option B

Payoff

Alternative

(Pays amount below in

1 month)

(Pays amount below in

7 months)

1 3000 3075

2 3000 3152

3 3000 3229

4 3000 3308

5 3000 3387

6 3000 3467

7 3000 3548

8 3000 3630

9 3000 3713

10 3000 3797

NOTES.- Example of a risk task in Andersen et al. (2008). All prizes are displayed
in DKK.
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Appendix G. Convex Menus in Andreoni and Sprenger (2012b)

menuID t0 t1 p0 p1 q0 q1

1 7 35 1 1 0.20 0.20
2 7 35 1 1 0.19 0.20

3 7 35 1 1 0.18 0.20

4 7 35 1 1 0.17 0.20
5 7 35 1 1 0.16 0.20

6 7 35 1 1 0.15 0.20

7 7 35 1 1 0.14 0.20
8 7 63 1 1 0.20 0.20

9 7 63 1 1 0.19 0.20
10 7 63 1 1 0.18 0.20

11 7 63 1 1 0.17 0.20

12 7 63 1 1 0.16 0.20
13 7 63 1 1 0.15 0.20

14 7 63 1 1 0.14 0.20

15 7 35 1 0.8 0.20 0.20
16 7 35 1 0.8 0.19 0.20

17 7 35 1 0.8 0.18 0.20

18 7 35 1 0.8 0.17 0.20
19 7 35 1 0.8 0.16 0.20

20 7 35 1 0.8 0.15 0.20

21 7 35 1 0.8 0.14 0.20
22 7 63 1 0.8 0.20 0.20

23 7 63 1 0.8 0.19 0.20
24 7 63 1 0.8 0.18 0.20

25 7 63 1 0.8 0.17 0.20

26 7 63 1 0.8 0.16 0.20
27 7 63 1 0.8 0.15 0.20

28 7 63 1 0.8 0.14 0.20

29 7 35 0.8 1 0.20 0.20
30 7 35 0.8 1 0.19 0.20

31 7 35 0.8 1 0.18 0.20

32 7 35 0.8 1 0.17 0.20
33 7 35 0.8 1 0.16 0.20

34 7 35 0.8 1 0.15 0.20

35 7 35 0.8 1 0.14 0.20
36 7 63 0.8 1 0.20 0.20

37 7 63 0.8 1 0.19 0.20
38 7 63 0.8 1 0.18 0.20

39 7 63 0.8 1 0.17 0.20

40 7 63 0.8 1 0.16 0.20
41 7 63 0.8 1 0.15 0.20

42 7 63 0.8 1 0.14 0.20

menuID t0 t1 p0 p1 q0 q1

43 7 35 0.5 0.5 0.20 0.20
44 7 35 0.5 0.5 0.19 0.20

45 7 35 0.5 0.5 0.18 0.20

46 7 35 0.5 0.5 0.17 0.20
47 7 35 0.5 0.5 0.16 0.20

48 7 35 0.5 0.5 0.15 0.20

49 7 35 0.5 0.5 0.14 0.20
50 7 63 0.5 0.5 0.20 0.20

51 7 63 0.5 0.5 0.19 0.20
52 7 63 0.5 0.5 0.18 0.20

53 7 63 0.5 0.5 0.17 0.20

54 7 63 0.5 0.5 0.16 0.20
55 7 63 0.5 0.5 0.15 0.20

56 7 63 0.5 0.5 0.14 0.20

57 7 35 0.5 0.4 0.20 0.20
58 7 35 0.5 0.4 0.19 0.20

59 7 35 0.5 0.4 0.18 0.20

60 7 35 0.5 0.4 0.17 0.20
61 7 35 0.5 0.4 0.16 0.20

62 7 35 0.5 0.4 0.15 0.20

63 7 35 0.5 0.4 0.14 0.20
64 7 63 0.5 0.4 0.20 0.20

65 7 63 0.5 0.4 0.19 0.20
66 7 63 0.5 0.4 0.18 0.20

67 7 63 0.5 0.4 0.17 0.20

68 7 63 0.5 0.4 0.16 0.20
69 7 63 0.5 0.4 0.15 0.20

70 7 63 0.5 0.4 0.14 0.20

71 7 35 0.4 0.5 0.20 0.20
72 7 35 0.4 0.5 0.19 0.20

73 7 35 0.4 0.5 0.18 0.20

74 7 35 0.4 0.5 0.17 0.20
75 7 35 0.4 0.5 0.16 0.20

76 7 35 0.4 0.5 0.15 0.20

77 7 35 0.4 0.5 0.14 0.20
78 7 63 0.4 0.5 0.20 0.20

79 7 63 0.4 0.5 0.19 0.20
80 7 63 0.4 0.5 0.18 0.20

81 7 63 0.4 0.5 0.17 0.20

82 7 63 0.4 0.5 0.16 0.20
83 7 63 0.4 0.5 0.15 0.20

84 7 63 0.4 0.5 0.14 0.20

NOTES.- Payoff dates shown in days.


	Appendix A. Identification Proofs
	Appendix B. Hybrid Menus
	Appendix C. Numerical Evaluation of Choice Probabilities
	Appendix D. Extensions
	Appendix E. Baseline Wealth
	Appendix F. Example of Risk and Time Tasks in AHLR
	Appendix G. Convex Menus in Andreoni and Sprenger (2012b)

