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We propose a rule of decision-making, the sequential procedure guided by routes,
and show that three influential boundedly rational choice models can be equivalently
understood as special cases of this rule. In addition, the sequential procedure guided
by routes is instrumental in showing that the three models are intimately related. We
show that choice with a status quo bias is a refinement of rationalizability by game trees,
which, in turn, is also a refinement of sequential rationalizability. Thus, we provide a sharp
taxonomy of these choice models, and show that they all can be understood as choice by
sequential procedures.

 2012 Elsevier Inc. All rights reserved.

1. Introduction

There is evidence suggesting that individuals make use of operational procedures to analyze complex choice situations
(see, e.g., Gigerenzer and Todd, 1999; Hogarth and Karelaia, 2005; Manrai and Prabhakant, 1989). In this line, suppose
a decision-maker (DM) that, when confronting the problem of choosing an alternative from a menu, first identifies a pair of
alternatives. In that pair the DM has no difficulty in discarding the alternative that she dislikes. Then, in the remaining menu
of alternatives she identifies a new pair and discards the dominated alternative in the pair. The DM repeats this process
until only one alternative remains, representing the choice. That is, the DM reaches the chosen alternative by discarding
alternatives in binary comparisons in a certain order, say a route. For example, the DM may be more used to comparing
some pairs of alternatives than others and find that her familiarity suggests a particular route through all the pairs of
alternatives. We refer to this behavioral heuristic as a sequential procedure guided by routes.

To illustrate, consider the set of alternatives {1,2,3} and let the choices of the DM be alternative 2 from {1,2},
3 from {2,3}, and 1 from {1,3} and from {1,2,3}. The questions arise as to whether this choice behavior can be un-
derstood as a sequential procedure guided by routes, and if so, by which routes. We only need to evaluate the choice from
the grand menu {1,2,3}. If the DM focuses first on the pair {2,3}, she immediately discards alternative 2. She then con-
siders the surviving menu {1,3}, where she discards option 3, leading to option 1 which is precisely the observed choice.
Hence, the answer to the first question above is yes, the behavior of the DM can be understood by way of the sequential
procedure guided by routes. Now, it is easy to see that any route starting with a pair of alternatives different to {2,3} does
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not lead to the choice of 1 from {1,2,3}. Hence, the behavior of our DM is consistent with only some routes. Intuitively,
in general, the more routes that are consistent with the behavior of a DM the more structured her behavior will be. This
is so because behavior consistent with a route immediately implies that her choice from any menu of alternatives does not
depend on the presence or absence of the dominated alternative in the first pair in the menu, dictated by the route. Clearly,
then, the more routes consistent with choice, the more congruent choice behavior is.

In this paper we make use of the notion of sequential procedure guided by routes to gain a deeper understanding of
a number of key boundedly rational choice models in the literature:

• Status quo bias (Masatlioglu and Ok, 2005, 2010): the DM typically values an alternative more highly when it is regarded
as the status quo, than she would otherwise.

• Rationalizability by game trees (Xu and Zhou, 2007): the choices of the DM are the equilibrium outcome of the conflict
between different binary relations, modeled as a game.

• Sequential rationalizability (Manzini and Mariotti, 2007): the DM sequentially applies a collection of binary relations in
a fixed order of priority.

First, we show how these three models, as well as the classical rational choice model, can all be described in terms
of the sequential procedure guided by routes. We characterize the exact nature of the routes consistent with each one
of these choice models. This contributes to gain a deep understanding of the kind of behavior involved in the different
models. Clearly, the classical rational choice behavior is consistent with every single possible route. Then, we show that
the status quo biased choice model can be equivalently represented by the sequential procedure where the routes have
a very specific structure, in consonance with a certain perception of the alternatives. In a nutshell, the DM perceives one
alternative as similar in some dimension to each one of the alternatives in a collection of alternatives, while the alternatives
in the complementary set are perfectly perceived in isolation, without the need of relating them to each other. This per-
ception of the alternatives predisposes the class of routes that the DM contemplates. Next, we prove that rationalizability
by game trees can be equivalently represented by the sequential procedure where the routes are in consonance with the
alternatives being perceived in nested classes of similarity. For example, the DM considers one binary attribute and divides
the alternatives in two classes, one composed of the alternatives enjoying the attribute and the complementary one. Then,
within one class of alternatives the DM considers another binary attribute and divides the class into several subclasses
and so on. As in the former case, the routes contemplated by the DM follow from this perception of the alternatives. Fi-
nally, we show that sequential rationalizability is behaviorally equivalent to the model of sequential procedure guided by
routes.

Second, these behavioral characterizations based on the sequential procedure guided by routes facilitate the systematic
comparison of the different models of choice, leading to what may be regarded as a priori unexpected implications. In
particular, we show that choice with a status quo bias presents more consistency with routes than choice rationalizable by
game trees and the latter presents more consistency with routes than sequential rationalizable choice. That is, every rational
choice is also status quo biased choice, which in turn is also rationalizable by a game tree, which in turn is also sequentially
rationalizable. Thus, the behavioral characterizations that we provide in this paper give a sharp taxonomy of the different
choice models.

2. Sequential choice procedures

2.1. Preliminaries

Let X be a finite set of alternatives. We denote by X (respectively, by B) the collection of all non-empty subsets (resp.,
of all binary subsets) of X . A choice function is a mapping c :X → X such that c(A) ∈ A. That is, a choice function c assigns
to every non-empty set A ⊆ X a unique element c(A) ∈ A.

We now formally introduce the notion of sequential procedure guided by routes. To this end, consider first the following
concepts. A route is a linear order < over B.2 We interpret a route as the way in which the alternatives are considered
by the DM. That is, a DM contemplating a route perceives the alternatives with a certain structure, or in other words,
with a certain frame. This means that when facing a menu A, the DM does not immediately scrutinize all the available
alternatives at once, but follows an order, the route, by which she sequentially examines the alternatives in ordered pairs.
The route contemplated by the DM may be dictated by experience, physical appearance of the alternatives, etc. For any
route < and set A with at least two alternatives, denote by A< the first binary subset in A according to the route <.3 This
is the very first pair that the DM contemplates when, following the route <, evaluates the menu A. Also, denote by nc(B)
the element that is not chosen from the binary menu B ∈ B given the choice function c. We say that a choice function c
is a sequential procedure guided by the set of routes R or SPGR if for every <∈ R and every set A ∈ X with at least two
alternatives, c(A) = c(A \ {nc(A<)}).

2 A linear order is a complete, transitive and antisymmetric binary relation.
3 Formally, (i) A< ∈ B, (ii) A< ⊆ A and (iii) for any B ∈ B such that B ⊆ A we have A< < B .
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The sequential procedure guided by routes represents, therefore, a simple behavioral heuristic. That is, the DM when
confronting the choice from A and contemplating the route <, considers the first pair of alternatives A< from menu A,
evaluates which is the liked and which the disliked alternative in A< , and concludes that the choice from A should be
independent of the availability of the disliked alternative in A< . We interpret the set of routes R as the collection of
routes the DM contemplates.4 In what follows we apply the sequential procedure guided by routes to a number of different
choice models, where we only vary the structure of the class of routes R that the DM contemplates. Then a compari-
son of the different classes of routes leading to the different choice models will allow a systematic comparison between
them.

2.2. Rational choice

The most structured case of decision-making is when the choices from every single possible menu can be understood as
the result of the maximization of a well-behaved preference relation. Formally, we say that a choice function c is a rational
choice or RAT, if there exists a linear order P on X such that for all A ∈X , c(A) = M(A, P ).5

It is easy to see that rational choice can be equivalently described by the sequential procedure guided by routes whenever
the DM considers all the possible routes. This clearly represents the case where the framing of the menus of alternatives
is inconsequential for the DM. The following theorem formally establishes the characterization of rational choice by way of
the sequential procedure guided by routes.6

Theorem 1. A choice function is a rational choice if and only if it is an SPGR for every route < over B.

2.3. Endogenous status quo biased choice

There is a wide range of empirical literature supporting the view that DMs typically value an alternative more highly
when it is regarded as the status quo than they would otherwise. This is the so-called status quo bias (see, e.g., Kahneman
et al., 1991; Thaler, 1980). Masatlioglu and Ok (2005, 2010) provide influential axiomatic studies of this choice behavior.7

In Masatlioglu and Ok’s setting, a choice problem is a pair (A, x) where A is the set of alternatives, and x ∈ A or x = %. When
x ∈ A, the pair (A, x) represents a choice problem with the status quo x, while if x = % the choice problem is standard in the
sense that it is without a status quo. Thus, choice is defined over the collection of all choice problems (A, x). Masatlioglu
and Ok introduce a set of properties for choice behavior that are equivalent to the following status quo biased choice model.
The DM regards a subset Q of X as the alternatives that are clearly superior to the status quo. Then, if the DM confronts
a choice problem without a status quo, she simply maximizes a well-behaved preference relation. If there is a status quo
the DM assesses whether any of the superior alternatives to the status quo is available. If there are any she will maximize
from among the superior alternatives to the status quo, that is she will choose the optimal alternative from Q ∩ A according
to her preference relation. If not, she will stay with the status quo.

In this paper we build on Masatlioglu and Ok’s model to offer, for the first time, two versions of the status quo biased
phenomena where the status quo is endogenous. That is, we define status quo dependence within the standard model of
choice, by way of choice functions defined on X instead of over the collection of all choice problems (A, x). We entertain
two different possible reactions to the case where there are attractive alternatives from the point of view of the status quo.
In one case, as in Masatlioglu and Ok, we restrict the DM to maximize within Q ∩ A. This represents a marked status quo
bias, since the status quo makes her forget about all the alternatives that are available in A, but are not in Q . Alternatively,
we also consider the case that when Q ∩ A '= ∅, the DM abandons the status quo, but otherwise chooses the optimal
alternative in A. This represents the behavior of a DM that although biased by the status quo, is less subject to it.

Formally, we say that a choice function c is an extreme endogenous status quo biased choice if there exists a linear order P
on X , an element d ∈ X and a set Q ⊆ {x ∈ X: xPd} such that: (i) for all A ∈ X where d /∈ A, c(A) = M(A, P ), (ii) for all
A ∈ X with d ∈ A and A ∩ Q = ∅, c(A) = d, and (iii) for all A ∈ X with d ∈ A and A ∩ Q '= ∅, c(A) = M(A ∩ Q , P ). We say
that c is a weak endogenous status quo biased choice if (iii) is replaced by (iii′) for all A ∈ X with d ∈ A and A ∩ Q '= ∅,
c(A) = M(A \ {d}, P ). We say that a choice function c is an endogenous status quo biased choice or SQB if it is an extreme or
a weak endogenous status quo biased choice.

The question arises as to whether endogenous status quo biased choice can be understood as a sequential procedure for
a certain class of routes. Here we show that this is in fact the case. To do so we first need to introduce the following general
definitions, and then we will apply them to the case of the endogenous status quo biased choice.

The DM may entertain a similarity structure over the alternatives. Namely, she may regard some alternatives as belong-
ing to a given analogy class, in the sense of sharing some feature, being it physical or not. Then, the routes that the DM

4 An alternative interpretation to the case where the behavior of the DM is compatible with the set of routes R is that the choice data do not allow the
identification of the exact route in R followed by the DM.
5 In general, for any binary relation P , M(A, P ) = {x ∈ A: (y, x) ∈ P for no y ∈ A}.
6 All the proofs are contained in Appendix A.
7 Other theoretical contributions to the status quo bias literature are Apesteguia and Ballester (2009), Bossert and Sprumont (2009), Dean (2008), Giraud

(2012), Koszegi and Rabin (2006), Mandler (2004), Ok et al. (2011), and Sagi (2006).
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contemplates are in fact characterized by the similarity structure the DM considers, in the following sense. For any two
disjoint classes of the similarity structure, the route will first place all the binary comparisons involving elements within
a given class, and only later will she consider the crossed pairs formed by one element of each class. That is, the DM first
evaluates the pairs formed by similar alternatives, and only after she assesses pairs of dissimilar alternatives, those belong-
ing to different classes of similarity. Intuitively, the similarity structure biases the boundedly rational DM to contemplate
particular orders over the pairs of alternatives. Formally, a similarity structure S is a collection of non-empty subsets of X ,
the union of which is X . We say that the route < respects the similarity structure S if, for every A, B ∈ S with A∩ B = ∅, all
binary subsets of A and all binary subsets of B precede all binary subsets conformed by one element of A and one element
of B .

Clearly, a perfectly rational DM is not distorted by any particular similarity structure. That is, the rational DM is able
to perfectly evaluate every single alternative on its own, and hence, considers every possible route over the binary prob-
lems, as Theorem 1 shows. This is not the case of the endogenous status quo biased DM. We show below that the latter
perceives the alternatives in, what we call, centered similarity structures. A similarity structure is centered if: (i) all subsets
of S have at most two elements, and (ii) if there are more than two binary subsets in S , they all intersect in a unique
element s. A centered similarity structure can be understood as a star-type network, where there is an alternative, the cen-
ter, connected to a number of alternatives, and there is no other link between alternatives. Then, the routes respecting
a centered similarity structure consider all the pairs of alternatives containing the center and an alternative similar to the
center, before the pairs containing the center (or a similar alternative to the center) and a dissimilar alternative to the
center.

Theorem 2 establishes that centered similarity structures characterize the class of routes that leads to endogenous status
quo biased choice.

Theorem 2. A choice function is an endogenous status quo biased choice if and only if there exists a centered similarity structure S
such that it is an SPGR for the set of routes that respect S .

2.4. Rationalizability by game trees

Consider a DM whose behavior can be understood as the result of a collection of selves in internal conflict. Xu and Zhou
(2007) provide a model of this heuristic: the DM’s choices are the equilibrium outcome of an extensive game with perfect
information. The alternatives are the terminal nodes of the game and the criteria take the form of preference relations at
the non-terminal nodes. The outcome is the subgame perfect Nash equilibrium of the game.8

Formally, a (binary) game tree Γ = (G, {Pi}ki=1) is a pair where: (i) G is a binary tree (each node has either zero or
two successors) with each alternative of X appearing as an end node of the tree once and only once and (ii) a collection
of asymmetric binary relations, one for each non-terminal node i of the tree. Given Γ and any subset A ∈ X , let Γ |A
be the reduced game that retains all the branches leading to terminal nodes in A. We then say that a choice function c is
rationalizable by game trees or RGT if there exists a game tree Γ such that for all A ∈X , c(A) = SPNE(Γ |A), where SPNE(Γ |A)
stands for the subgame perfect Nash equilibrium outcome of Γ |A.

We show that rationalizability by game trees is also a special case of the sequential procedure guided by routes. To prove
this claim, consider the following similarity structure. We say that a similarity structure S is nested if for every A, B ∈ S
with A ∩ B '= ∅, A ⊂ B or B ⊂ A. A DM entertaining a nested similarity structure perceives the alternatives as hierarchically
ordered. That is, when considering a similarity class A, the DM wonders whether the alternatives in A are sufficiently
homogeneous for a good understanding of them, or can in fact be partitioned into different subclasses, each one composed
of alternatives sharing some attribute that the DM regards as important. Then, any route respecting a nested similarity
structure will first consider the pairs in each one of the subclasses, and only then will consider pairs with elements of
different subclasses.

Theorem 3 establishes the behavioral characterization of rationalizability by game trees based on the SPGR.

Theorem 3. A choice function is rationalizable by game trees if and only if there exists a nested similarity structure S such that it is
an SPGR for the set of routes that respect S .

Remark 1. In our definition of rationalizability by game trees we have assumed that the tree G is binary, and that the
binary relations in the non-terminal nodes are asymmetric. The original notion of Xu and Zhou involves game trees that
are not necessarily binary and where the binary relations in the non-terminal nodes are assumed to be linear. Denote this
case by RGT(LO). It is easy to see that the binariness of the game tree is without loss of generality. Every choice function
rationalizable by a non-binary game tree with linear orders in the non-terminal nodes can be equivalently rationalized by
a game tree where all the non-terminal nodes have two successors. It is also immediate that relaxing the assumption on

8 Other models that are consistent with this view of decision-making by way of multi-selves in internal conflict are Ambrus and Rozen (2011), de Clippel
and Eliaz (2012), Horan (2012), and Kalai et al. (2002).
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the linearity of the binary relations to asymmetry signifies an extension. The following proposition, due to Horan (2012), es-
tablishes that the inclusion is strict. That is, there are choice patterns that are rationalizable by game trees with asymmetric
relations but that are not with linear orders. Let Cω denote the class of choice functions that are ω, where ω is a specific
choice model. In this case ω is either RGT(LO) or RGT.

Proposition 1. CRGT(LO) ⊂ CRGT .

2.5. Sequential rationalizability

In the model of sequentially rationalizable choice of Manzini and Mariotti (2007) a DM faced with a choice problem
applies a number of binary relations in a fixed order of priority, gradually narrowing down the set of alternatives until one is
identified as the choice.9 Formally, let M j

i (A) with i ! j denote the set M j
i (A) = M(M(. . .M(M(A, Pi), Pi+1), . . . , P j−1), P j).

That is M j
i (A) is the set of alternatives surviving from A the sequential application of binary relations Pi, Pi+1, . . . , P j−1, P j .

We then say that a choice function c is sequentially rationalizable or SR whenever a non-empty ordered list of acyclic binary
relations on X exists {P1, . . . , PK }, such that c(A) = MK

1 (A) for all A ⊆ X . In that case we say that {P1, . . . , PK } sequentially
rationalizes c.

We show here that the model of sequential rationalizability is equivalent to the model of sequential procedure guided
by routes. This clearly represents the least behaviorally structured case of all those we have studied in this paper.

Theorem 4. A choice function is sequentially rationalizable if and only if it is an SPGR.

Remark 2. The proof of Theorem 4 shows that every acyclic rational can be split into a collection of ordered binary relations,
each one containing a single binary comparison, with no effect on the sequential rationalization of the choice function c.
Furthermore, since every binary relation comprising a single binary comparison is trivially acyclic, this naturally suggests an
equivalent notion of sequential rationalization; one that uses binary relations comprising a single binary comparison. This
equivalence can be immediately extended to cases where the structure of the binary relations is at least acyclic. Examples
of such relations are orders or semi-orders (a special case of transitive and asymmetric binary relations; see Manzini and
Mariotti, 2012b). We summarize this result in Corollary 1. To this end, we say that P is α whenever the structure of P is at
least acyclic, and denote by SR(P) a choice function that is sequentially rationalizable where the binary relations in the list
that sequentially rationalizes the choice function are at least P.

Corollary 1. CSR(α) = CSR.

Remark 3. While in this paper we favor acyclic binary relations, Manzini and Mariotti (2007) impose only asymmetry,
and hence allow for cycles in the binary relations. The models share the same intuition in that they consider a DM who
gradually narrows down the set of alternatives by applying a set of incomplete criteria in a fixed order. They nevertheless
differ in terms of the structure imposed on the binary relations.10

We now show that the use of acyclic or asymmetric binary relations makes a difference. That is, there are choice patterns
that can be sequentially rationalized using asymmetric binary relations (SR(As)) that cannot be sequentially rationalized by
means of acyclic binary relations. However, we also show that in the prominent case of two asymmetric binary relations,
called Rational Shortlist Methods (RSM) (see Manzini and Mariotti, 2007), the two asymmetric relations can be transformed
into a collection of acyclic relations, and hence every choice function that is an RSM, is also an SR.11

Proposition 2. CRSM ⊂ CSR ⊂ CSR(As) .

2.6. Relation between the models

We have shown that rational choice, endogenous status quo biased choice, rationalizability by game trees and sequential
rationalizability can all be understood by way of the sequential procedure guided by routes. Importantly, we have estab-
lished these results by delimiting the classes of routes for which these choice patterns are consistent. We have proved that
rational choice is equivalent to sequential procedures for every single possible route, that endogenous status quo biased
choice and rationalizability by game trees are sequential procedures only for certain subsets of routes, and finally that se-
quential rationalizability is so for the extreme case of a route. This exercise makes plain most of the relations between

9 Papers contributing to the view of sequential decision-making are Cherepanov et al. (2010), Mandler et al. (2012), Manzini and Mariotti (2012b),
Masatlioglu et al. (2012), and Tyson (2011).
10 See Bossert et al. (2005) and Ehlers and Sprumont (2008) for a thorough discussion of models of rationalization by a single asymmetric or a single
acyclic binary relation.
11 García-Sanz and Alcantud (2010) and Salant and Rubinstein (2008) also study the case of the sequential application of two binary relations.
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the models. Namely, that rational choice is a refinement of all the rest of models of choice, and that both the endogenous
status quo biased choice and rationalizability by game trees are refinements of sequential rationalizability. Notice also that
the characterization results immediately show that the endogenous status quo biased choice is also a refinement of ratio-
nalizability by game trees. To see this, consider the centered similarity structure S associated to an endogenous status quo
biased choice c. Think of the nested similarity structure S ′ where we consider all singletons in S and the set formed by
the union of all binary subsets in S . Clearly, any route < that respects S ′ also respects S and thus, c(A) = c(A \ {nc(A<)}).
This proves that c is rationalizable by game trees.

The following result establishes that all the described relationships are in fact strict.

Proposition 3. CRAT ⊂ CSBQ ⊂ CRGT ⊂ CSR.

All the previous results establish that a variety of models can be understood as sequential procedures guided by routes.
An immediate question is whether all sorts of choice patterns can be accommodated in this way. A simple argument shows
that this is in fact not the case. Suppose that we observe that our DM chooses alternative 1 from {1,2} and from {1,3}, but
chooses 2 from {1,2,3}. It is impossible to reconcile this behavior with choice by sequential procedures. The intuition is
very simple. Given the choices in the binary problems, alternative 1 can never be rejected by the DM and hence, it should
be the choice from the grand set.12

3. Final remarks

In this paper we propose a procedural rule of decision-making, the sequential procedure guided by routes, and show
that a number of relevant choice models in the literature can be equivalently understood as special cases. Further, we show
that one can use the notion of sequential procedure guided by routes to give structure to the different boundedly rational
models offered in the literature. We show that rational choice is a refinement of endogenous status quo biased choice,
which in turn is a refinement of rationalizability by game trees, which finally is a refinement of sequential rationalizability.
We prove these claims by characterizing the nature of the classes of routes consistent with each case.

We see that the notion of sequential procedure guided by routes suggests promising new lines for future research. First,
it might be particularly interesting to study the role of manipulating the routes considered by an agent by way of marketing
strategies or of a principal in a market interaction environment. Second, the sequential procedures guided by routes can be
used as a tool to learn to gain consistency in choice across menus of options. That is, making the DM to go through various
routes may make her aware of the route dependency of her behavior, and hence may make her reconsider some binary
comparisons that lead to violations of rationality. Finally, the size and composition of the class of routes consistent with
observed behavior suggests itself as a measure of the rationality of the DM. Clearly, the more routes the DM observes, the
less capricious her behavior is.13

Appendix A. Proofs

Proof of Theorem 1. A rational choice is clearly an SPGR for the set of all possible routes. We show that a choice function c
that is an SPGR for the set of all possible routes is a rational choice. Since c is a single-valued function defined over the
universal domain X , the preference P revealed from the choices in the binary sets must be complete and asymmetric.
We prove that it is also acyclic. Suppose by contradiction that P contains a cycle, that is, x1Px2P . . . Pxk Px1, and suppose,
without loss of generality, that the cycle is composed of different alternatives. Consider any route < such that {xk−1, xk} <
{xk−2, xk−1} < · · · < {x1, x2} are the first binary sets. Since c is a sequential procedure guided by the route <, it follows
that c({x1, . . . , xk}) = x1. Consider now another route <′ where {xk, x1} is the first binary set. The same argument as above
clearly implies that c({x1, . . . , xk}) = c({x2, . . . , xk}) '= x1, which is absurd. Therefore, P is a linear order. Now, it can be easily
shown that the definition of SPGR implies that for all A ∈X , c(A) = M(A, P ). !

Proof of Theorem 2. We first prove that if c is an extreme (respectively, weak) endogenous status quo biased choice, there
must exist a centered similarity structure S such that c is an SPGR for the set of routes that respect S . Consider the status
quo d and the set Q . If Q ∪ {d} = X or Q = ∅ the choice function is rational and the result follows trivially for the centered
similarity structure formed by all the singletons. Otherwise, construct S with sets {x,d}, where x /∈ Q ∪ {d} (resp., x ∈ Q ),
and singletons {y}, with y ∈ Q (resp., y /∈ Q ∪ {d}), which is clearly a centered similarity structure. Consider any route <
that respects S . We now prove that c is an SPGR for such a route <. Consider a set A ∈ X with at least two alternatives.
We distinguish several cases depending on the composition of A. If d /∈ A, or d ∈ A ⊆ Q ∪ {d}, or d ∈ A ⊆ X \ Q , behavior

12 It is easy to see that this choice pattern is not SR(As) either. Models that would account for this sort of behavior and then are not sequential procedures
guided by routes are described in Cherepanov et al. (2010), de Clippel and Eliaz (2012), Manzini and Mariotti (2012a), Masatlioglu et al. (2012), and Ok et
al. (2011).
13 There is recent growing interest in the development of new tools to measure the rationality of individuals. See, e.g., Apesteguia and Ballester (2011),
Beatty and Crawford (2011), Dean and Martin (2011), and Echenique et al. (2011). See also Choi et al. (2011).
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is rational over all subsets of A, and thus c(A) = c(A \ {nc(A<)}). We are left to consider the case in which d ∈ A and
A \ (Q ∪ {d}) '= ∅ '= A ∩ Q . Given that < respects S , A< is a binary set containing d and an element x ∈ A \ (Q ∪ {d}) (resp.,
x ∈ A ∩ Q ). Since x /∈ Q (resp., x ∈ Q ), nc(A<) = x (resp., nc(A<) = d). Thus, c(A) = M(A ∩ Q , P ) = M((A \ {nc(A<)}) ∩
Q , P ) = c(A \ {nc(A<)}) (resp., c(A) = M(A \ {d}, P ) = c(A \ {nc(A<)})), and the claim follows.

In the other direction, suppose now that there exists a centered similarity structure S such that c is an SPGR for the
set of routes that respect S . We now prove that c is an endogenous status quo biased choice. If all the subsets in S
are singletons, c is an SPGR for every possible route on B, and given Theorem 1, choice behavior is rational. This is but
a special case of endogenous status quo biased choice. If some of the subsets in S are non-singletons, since S is centered,
the intersection of all non-singleton sets in S is non-empty. This intersection must be a unique element or a doubleton.
In the former case, denote the element in the intersection by d. In the latter case, it is easy to see that it does not matter
which of these two elements is chosen to be the status quo, so pick any of these two elements and denote it by d. Define
Q = {x ∈ X: c(x,d) = x} and the revealed preference P̂ from the binary choices on X \ {d}. Since every route respecting S
can order all binary sets in X \ {d} in any way, the definition of SPGR implies linearity of P̂ . We can extend P̂ to a linear
order P on X by placing d below all the elements in Q . We now show that c is either an extreme or a weak endogenous
status quo biased choice associated to d, Q and P .

Let U be the set of all elements u ∈ X \ {d} such that {u} ∈ S and let V be the set of all elements v ∈ X \ {d} such that
{d, v} ∈ S . Clearly, since S is centered, U ∪ V = X \ {d} and also, a route < respects S if and only if {d, v} < {d,u} and
{d, v} < {u, v} for all u ∈ U and v ∈ V . Consider any set A with three alternatives conforming a choice cycle involving the
binary menus. We prove that A is of the form {d,u, v} where u ∈ U and v ∈ V . If d /∈ A or the other two elements in A
belong both to U , the routes respecting S can order the three binary sets in A in any way, and hence, the definition of
SPGR contradicts the assumed cycle. Similarly, if u, v ∈ V , then {d, v} and {d,u} can be ordered in any way, and the two
precede {u, v}, which implies that there is no cycle in the binary menus.

Let T be the set of all alternatives different than d that conform cycles of three alternatives with d. Define the sets
T+ = {x ∈ T : c(x,d) = x} and T− = {x ∈ T : c(x,d) = d}. We now claim that T+ ⊆ U and T− ⊆ V , or vice versa. Consider
two sets of three alternatives conforming cycles, A = {d,a+,a−}, and B = {d,b+,b−}, where a+,b+ ∈ T+ and a−,b− ∈ T− .
We now show that a+ ∈ U ⇔ b+ ∈ U and a− ∈ U ⇔ b− ∈ U . If either a+ = b+ or a− = b− , the claim follows trivially.
Suppose then that a+ , b+ , a− , b− are four different alternatives. If a− = c({a−,b+}) then we know that a− , b+ and d form
a cycle and hence a− , b+ must be separated by U and V . Since a− , a+ (resp., b− , b+) are also separated by U and V ,
it immediately follows that a+ and b+ (resp., a− and b−) belong to the same set U or V . If b+ = c({a−,b+}), since P is
linear on {a+,b+,a−,b−}, it must also be b− = c({a+,b−}). Then we know that a+ , b− and d form a cycle and we have to
separate a+ and b− through U and V . Since a− , a+ (resp., b− , b+) are also separated by U and V , it immediately follows
again that a− and b− (resp., a+ and b+) belong to the same set U or V . The repeated application of this argument proves
the claim.

Now consider any set A with at least two alternatives. If d /∈ A, since M(A, P̂ ) is chosen in all binary sets containing it
and containing another element of A, the definition of SPGR implies that c(A) = M(A, P̂ ) = M(A, P ). If d ∈ A and A∩ Q = ∅,
d is chosen against any other element in A and thus, the same logic leads to c(A) = d. Then let A be such that d ∈ A and
A ∩ Q '= ∅. We divide the rest of the proof in two cases, namely, T+ ⊆ U leading to an extreme endogenous status quo
biased choice, and T+ ⊆ V leading to a weak endogenous status quo biased choice.

First, assume that T+ ⊆ U (and consequently, T− ⊆ V ). Since T− ⊆ V , we can consider any route < in which the initial
binary sets are all of the form {x,d}, with x ∈ T− . The definition of SPGR implies that c(A) = c(A \ T−). Now we prove
that M(A ∩ Q , P ) is the element chosen in all binary sets containing it and containing another element of A \ T− . This is
obvious for elements in A∩ Q and for d. It must be true also for any element x ∈ A \ T− such that x '= d and x /∈ Q , because
otherwise the elements x, d and M(A ∩ Q , P ) would form a cycle and x would be a member of T− , which is absurd. Hence,
the definition of SPGR implies that c(A) = M(A ∩ Q , P ). This proves that c is an extreme endogenous status quo biased
choice associated to d, Q and P .

Second, assume that T+ ⊆ V (and consequently, T− ⊆ U ). If M(A \ {d}, P ) ∈ Q , then clearly M(A \ {d}, P ) is the element
chosen in all binary sets containing it and containing any other element of A. Hence, the definition of SPGR implies that
c(A) = M(A \ {d}, P ). If d = c({d,M(A \ {d}, P )}), since A ∩ Q '= ∅, there must exist a cycle in A involving d, M(A \ {d}, P )
and an alternative in A ∩ Q . Hence T+ ∩ A '= ∅. Consider any route < that respects S and that starts with a first binary
comparison containing an element of T+ ∩ A. Then, it follows that c(A) = c(A \ {d}) and the argument on sets without
status quo leads to c(A \ {d}) = M(A \ {d}, P ), as desired. This proves that c is a weak endogenous status quo biased choice
associated to d, Q and P .

Thus, in any case, c is an endogenous status quo biased choice, concluding the proof. !

Proof of Theorem 3. We first prove that if c is rationalizable by game trees, there must exist a nested similarity structure S
such that c is an SPGR for the set of routes that respect S . Consider the game tree Γ = (G, {Pi}ki=1) that rationalizes c. Define
a collection of subsets of alternatives by considering, for any non-terminal node i, the set of all the alternatives Si that
directly and indirectly succeed the node i. Clearly, this collection is a well-defined nested similarity structure S . Consider
any route < that respects S and take any set A ∈ X with at least two alternatives. Let A< = {x, y}. Consider the node ixy
in the tree such that x and y directly or indirectly succeed it and such that no successor of ixy has the same property.
We now claim that Sixy ∩ A = {x, y}. Suppose otherwise. Then, a different element z ∈ Sixy ∩ A would exist. Without loss of
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generality, alternative z belongs to the same subtree that alternative x and thus, there exist a successor i′ of ixy such that
x, z ∈ Si′ (and y /∈ Si′ ). Since < respects S , it must be {x, z} < {x, y} contradicting that A< = {x, y}. We have proved that
alternatives x and y are the only alternatives in Sixy ∩ A. Backward induction guarantees that SPNE(Γ |A) = SPNE(Γ |A \ {l})
where l is the dominated alternative in {x, y} according to the preference in node ixy . But obviously, this is exactly nc(A<).
Hence, c(A) = SPNE(Γ |A) = SPNE(Γ |A \ {nc(A<)}) = c(A \ {nc(A<)}).

In the other direction suppose that there exists a nested similarity structure S such that c is an SPGR for the set of
routes that respect S; we prove that c is rationalizable by game trees. We first construct a game tree Γ = (G, {Pi}ki=1).
Associate the first node n1 to the set of all elements X ≡ A1. Consider a maximal set in S , according to set inclusion, which
is a strict subset of X but not a singleton (if there is no such a maximal set, simply pick up any set of two alternatives
from X ). Denote this set by A2. In this case, node n1 points to two nodes, n2 and n3, associated respectively with sets A2
and X \ A2 ≡ A3. Consider a node n j and its associated set A j . If A j contains only one alternative, this node is a terminal
one. If A j contains two alternatives, build two terminal nodes that succeed n j , each one associated to one of the alternatives
in A j . If A j contains three or more alternatives, consider a maximal set in S , according to set inclusion, which is a strict
subset of A j but it is not a singleton (if there is not such a maximal set, simply pick up any set of two alternatives from A j).
Let this set be B . In this case, node n j points to two nodes, nr and ns , associated respectively with sets B and A j \ B . Proceed
in this way until all terminal nodes are reached. Now, define the asymmetric preference associated to non-terminal node j,
with successors r and s, as follows. For every x ∈ Ar and for every y ∈ As , let xP j y if x = c({x, y}) and yP jx if y = c({x, y}).
We have constructed a binary tree Γ and we will prove now by induction that for all A ∈X : c(A) = SPNE(Γ |A).

The claim is trivial for sets with two alternatives. Suppose it is true for sets with at most p alternatives and let A be
any set with p + 1 alternatives. Let < be a route such that for any a,b, c,d ∈ X , {a,b} < {c,d} whenever iab directly or
indirectly succeed icd . By construction, < respects the nested similarity structure S . Now take A< = {x, y}. An analogous
argument to the one used above shows that Aixy ∩ A = {x, y}. By the definition of SPGR, it must be c(A) = c(A \ {nc(A<)}).
By the inductive hypothesis, c(A \ {nc(A<)}) = SPNE(Γ |A \ {nc(A<)}) and also, c(A<) = SPNE(Γ |A<). Hence, the choice in
A< is determined by preference Pixy and since there is no other alternative in Aixy ∩ A, it must be SPNE(Γ |A) = SPNE(Γ |A \
{nc(A<)}). This shows that c(A) = SPNE(Γ |A), as desired. !

Proof of Theorem 4. We first prove that if c is sequentially rationalizable, it is an SPGR. Suppose {P1, . . . , PK } sequentially
rationalizes c. Construct the collection of relations {P ′

1, . . . , P
′
K } from {P1, . . . , PK }, as follows: for all j = 1, . . . , K , (x, y) ∈ P ′

j
if and only if (x, y) ∈ P j and there is no i < j such that (x, y) ∈ Pi or (y, x) ∈ Pi . Clearly, {P ′

1, . . . , P
′
K } is an ordered collec-

tion of acyclic relations that sequentially rationalizes c. Assume, without loss of generality, that the constructed collection
{P ′

1, . . . , P
′
K } is composed of non-empty relations (otherwise, simply remove the empty ones and re-number them).

Now, consider a relation P ′
j in the constructed collection {P ′

1, . . . , P
′
K }, that contains more than one pair of alternatives.

Since P ′
j is acyclic, there is a pair of alternatives (a,b) in P ′

j , such that (b,d) /∈ P ′
j for every d ∈ X . We can split the relation

P ′
j into two relations, {(a,b)} and P ′

j \ {(a,b)}. We show that for every A ⊆ X , M(A, P ′
j) = M(M(A, {(a,b)}), P ′

j \ {(a,b)}).
If either a or b is not in A, then clearly M(A, P ′

j) = M(A, P ′
j \ {(a,b)}), and since M(A, {(a,b)}) = A, it follows that

M(A, P ′
j \ {(a,b)}) = M(M(A, {(a,b)}), P ′

j \ {(a,b)}). In the case of a,b ∈ A, it follows that M(A, {(a,b)}) = A \ {b}. Given that
(a,b) in P ′

j and that (b,d) /∈ P ′
j for every d ∈ X , M(A, P ′

j) = M(A \{b}, P ′
j). Hence, M(A, P ′

j) = M(M(A, {(a,b)}), P ′
j \{(a,b)}),

as desired. It then follows that the ordered collection of acyclic relations {P ′
1, . . . , P

′
j−1, {(a,b)}, P ′

j \ {(a,b)}, P ′
j+1, . . . , P

′
K }

also sequentially rationalizes c. By iterating this relation-splitting process, we end up with a collection of relations
{P∗

1, . . . , P
∗
n(n−1)/2}, each of which contains one pair of alternatives and that sequentially rationalizes c (and obviously,

all pairs of alternatives appear in the sequence). Now, the ordered collection of relations {P∗
1, . . . , P

∗
n(n−1)/2} immediately

induces a route < over the binary problems such that c(A) = c(A \ {nc(A<)}), and hence the claim holds.
In the other direction suppose that c is an SPGR; we prove that c is sequentially rationalizable. Let < be a route such

that for every set A ∈ X with at least two alternatives, c(A) = c(A \ {nc(A<)}). Denote the linearly ordered collection
of binary problems according to < by {ai,bi}n(n−1)/2

i=1 . Without loss of generality, let it be assumed that ai = c({ai,bi}),
i = 1, . . . ,n(n − 1)/2. Define Pi = {(ai,bi)}. Clearly, {Pi}n(n−1)/2

i=1 is a collection of acyclic relations.

We prove, by induction over the cardinality of choice problems A ⊆ X , that {Pi}n(n−1)/2
i=1 sequentially rationalizes c. It is

obvious for the case of |A| ! 2. Supposing that the claim is true for |A| = t , we show it to be true for |A| = t + 1. By the
definition of SPGR, c(A) = c(A \ {nc(A<)}). By the inductive hypothesis c(A \ {nc(A<)}) = Mn(n−1)/2

1 (A \ {nc(A<)}), and by

the definition of nc(A<) and the construction of the binary relations, Mn(n−1)/2
1 (A \ {nc(A<)}) = Mn(n−1)/2

1 (A). Therefore,

c(A) = Mn(n−1)/2
1 (A), as desired. !

Proof of Proposition 2. We start by proving that CRSM ⊆ CSR . Suppose c is an RSM. Then, a pair of asymmetric relations
{P1, P2} that sequentially rationalizes c exists. We now construct a collection of acyclic relations {P ′

1, . . . , P
′
K } that also

sequentially rationalizes c. Let P ′
1 = P1 and given P2 = {(a12,b12), . . . , (ar2,br2)}, define the binary relations P ′

j+1 = {(a j
2,b

j
2)},

1! j ! r. First, we prove that all relations are acyclic. This is immediate for the relations P ′
2, . . . , P

′
r+1. Suppose, by way of

contradiction, that P ′
1 = P1 is cyclic. Then, a collection x1, . . . , xr ∈ X , with r > 1, such that (xi, xi+1) ∈ P1, i = 1, . . . , r − 1,
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and (xr, x1) ∈ P1 exists. Then M({x1, . . . , xr}, P1) = ∅, contradicting the fact that {P1, P2} sequentially rationalizes c. There-
fore, all relations are acyclic.

We now show that the collection {P ′
1, . . . , P

′
r+1} sequentially rationalizes c. Take any A. Suppose that Mr+1

1 (A) contains
two or more distinct elements. Take any two such elements x, y ∈ Mr+1

1 (A), x '= y. Then, for j = 1, . . . , r + 1, it is neither
the case that (x, y) ∈ P ′

j nor that (y, x) ∈ P ′
j . But then, for i = 1,2 it is neither true that (x, y) ∈ Pi nor that (y, x) ∈ Pi .

This contradicts the fact that {P1, P2} rationalizes the choice in {x, y} and therefore Mr+1
1 (A) contains at most one element.

We now prove that c(A) belongs to Mr+1
1 (A). Given that c is sequentially rationalized by {P1, P2}, it follows that c(A) ∈

M(A, P1) = M(A, P ′
1) and, for any y ∈ M(A, P ′

1), it cannot be the case that (y, c(A)) ∈ P2. Therefore, there is no P ′
j , j =

2, . . . , r + 1, such that (y, c(A)) ∈ P ′
j , and then c(A) ∈ Mr+1

1 (A). Hence, c(A) = Mr+1
1 (A) and {P ′

1, . . . , P
′
r+1} is a collection of

acyclic binary relations that rationalizes c.
We now show that the inclusion is strict. To do so, we define a choice function c1 that is in CSR , but is not an RSM. Let

X = {1, . . . ,4} and c1 be such that: c1({1,3}) = 1, c1({1,2}) = 2, c1({1,2,3,4}) = c1({1,2,3}) = c1({2,3,4}) = c1({2,3}) =
c1({3,4}) = 3, and c1({1,2,4}) = c1({1,3,4}) = c1({1,4}) = c1({2,4}) = 4. Consider the ordered collection of acyclic relations
{P1, . . . , P6} = {{(2,1)}, {(1,3)}, {(4,1)}, {(3,2)}, {(4,2)}, {(3,4)}}. It is easy to check that this collection of relations sequen-
tially rationalizes c1. Note, however, that 4 = c1({1,2,4}) = c1({1,3,4}) but c1({1,2,3,4}) = 3. This means that c1 violates
the classic Expansion property, and then by Theorem 1 in Manzini and Mariotti (2007), c1 is not an RSM.14 Therefore,
CRSM ⊂ CSR .

We now show that CSR ⊂ CSR(As) . The fact that CSR ⊆ CSR(As) is obvious, so we prove that the inclusion is strict. Consider
the following example. Let X = {1, . . . ,6} and c2 be such that: c2({1,3,4,5}) = c2({1,3,4}) = c2({1,3,5}) = c2({1,4,5}) =
c2({1,3}) = c2({1,5}) = 1, c2({2,3,6}) = c2({2,5,6}) = c2({2,5}) = c2({2,6}) = 2, c2({2,3,4,5,6}) = c2({2,3,4,5}) =
c2({2,3,5,6}) = c2({3,4,5,6}) = c2({2,3,4}) = c2({2,3,5}) = c2({3,4,5}) = c2({3,5,6}) = c2({2,3}) = c2({3,4}) =
c2({3,5}) = 3, c2({2,4,5,6}) = c2({1,4,6}) = c2({2,4,5}) = c2({2,4,6}) = c2({1,4}) = c2({2,4}) = c2({4,6}) = 4, c2({1,3,4,
5,6}) = c2({1,3,5,6}) = c2({1,4,5,6}) = c2({1,5,6}) = c2({4,5,6}) = c2({4,5}) = c2({5,6}) = 5, c2({1,3,4,6}) = c2({2,3,
4,6}) = c2({1,3,6}) = c2({3,4,6}) = c2({1,6}) = c2({3,6}) = 6, and c2(A) = c2(A \ {2}) whenever {1,2} ⊆ A.

We first show that c2 ∈ CSR(As) . Consider for instance P1 = {(1,2)}, P2 = {(1,3), (3,4), (4,2), (2,5), (5,6), (6,1)}, P3 =
{(5,4), (1,5), (2,6), (6,3), (3,5), (4,6)} and P4 = {(4,1), (3,2)}. One can verify that all choices are sequentially rationalized
by this ordered collection of asymmetric relations.

Suppose now that c2 is sequentially rationalized by the ordered collection of acyclic relations {P ′
1, . . . , P

′
K } with P ′

i =
{(ai,bi)}, i = 1, . . . , K . Let T be the smallest positive integer such that P ′

T '= {(1,2)} and P ′
T '= {(2,1)}. T is well defined

since the collection of acyclic relations must rationalize the choice in set {1,3}, for instance.
We now show that for every A with {aT ,bT } ⊆ A and {1,2} ! A, it must be that c2(A) = c2(A \ {bT }). If T = 1,

it is immediate that c2(A) = MK
1 (A) = MK

1 (A \ {b1}) = c2(A \ {b1}). If T > 1,
⋃

i<T {ai,bi} = {1,2}, and then it fol-
lows that c2(A) = MK

1 (A) = MK
T (A) = MK

T (A \ {bT }) = MK
1 (A \ {bT }) = c2(A \ {bT }). We now show that (aT ,bT ) /∈

{(1,2), (1,5), (3,5), (4,1), (6,1), (4,6), (5,6), (1,3), (6,3), (2,6), (3,4), (2,5), (3,2), (4,2), (5,4)}. To see this, simply no-
tice that c2({1,3,4,5,6}) /∈ {c2({1,3,4,6}), c2({3,4,5,6}), c2({1,3,4,5})} implies that (aT ,bT ) /∈ {(1,5), (3,5), (4,1), (6,1),
(4,6), (5,6)}. Analogously, c2({2,3,4,6}) /∈ {c2({2,3,4}), c2({2,3,6})} implies that (aT ,bT ) /∈ {(2,6), (3,4)}, and that
c2({2,4,5}) /∈ {c2({4,5}), c2({2,5})} implies that (aT ,bT ) /∈ {(4,2), (5,4)}. Finally, from c2({1,3,4,6}) '= c2({1,4,6}), c2({2,3,
4,5,6}) '= c2({2,3,4,6}) and c2({2,3,6}) '= c2({3,6}) we have that (aT ,bT ) /∈ {(1,3), (6,3), (2,5), (3,2)}.

Given the binary choices in c2, (aT ,bT ) is then a pair such that bT = c2({aT ,bT }). However, MK
1 (aT ,bT ) =

MK
T (aT ,bT ) = aT leading to a contradiction with the fact that the acyclic relations sequentially rationalize c2. !

Proof of Proposition 3. That CRAT ⊂ CSBQ follows trivially. Let us show that CSBQ ⊂ CRGT . Let X = {1,2,3,4} and the
choice function c3 defined by c3({1,2}) = c3({1,3}) = c3({1,2,3}) = c3({1,2,4}) = c3(X) = 1, c3({2,3}) = c3({2,4}) =
c3({2,3,4}) = 2, c3({3,4}) = c3({1,3,4}) = 3 and c3({1,4}) = 4. It is immediate that c3 ∈ CRGT with the following binary
tree: node 1 points to alternatives 2 and 4, node 2 points to node 1 and alternative 1, and node 3 points to node 2 and
alternative 3, and where the binary relations in the three nodes are constructed from the choices in the binary problems
involving the alternatives that are successors of them. To see that c3 is not an extreme endogenous status quo biased choice
note that from the cycle involving alternatives {1,2,4} (respectively {1,3,4}) we can immediately deduce that the status
quo can only be alternative 2 (respectively 4), which is absurd. Finally, to see that c3 is not a weak endogenous status
quo biased choice note that from the cycle involving alternatives {1,2,4} (respectively {1,3,4}) the status quo can only be
alternative 4 (respectively 1), which is absurd. Hence, c3 /∈ CSBQ .

We now show that CRGT ⊂ CSR . Consider the choice function c4 such that c4(A) = c3(A) for every A in X , except
for c4({1,3,4}) = 1 and c4({1,2,4}) = c4(X) = 4. To see that c4 is not RGT notice that the cycles involving alternatives
{4,1,2} and {1,3,4} imply that the only possible game tree that explains choices has two branches; one comprising
alternatives 1 and 2, and the other comprising alternatives 3 and 4. However, under this game tree, we should have
4 = c4(X) = c4({c4({1,2}), c4({3,4})}) = c4({1,3}) = 1, a contradiction. Finally, to show that c4 ∈ CSR consider the sequential

14 Expansion: For all A, B ⊆ X , x = c(A) = c(B) ⇒ x = c(A ∪ B).
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procedure for the route: {2,3} < {1,2} < {3,4} < {2,4} < {4,1} < {1,3}. It follows immediately that the former rationalizes
the choices of c4, and hence the claim follows. !
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